DOI QR코드

DOI QR Code

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders

Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직

  • So, Woong-Sub (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 소웅섭 (충남대학교 나노소재공학과) ;
  • 백경호 (충남대학교 나노소재공학과)
  • Received : 2010.12.17
  • Accepted : 2011.01.05
  • Published : 2011.02.27

Abstract

A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Keywords

References

  1. M. S. Kong, H. S. Hong, S. K. Lee, M. H. Seo and H. C. Jung, Kor. J. Mater. Res., 17(10), 560 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.10.560
  2. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, IEEE Trans. Compon. Hybrids Manuf. Technol. 13, 313 (1990). https://doi.org/10.1109/33.56163
  3. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, p. 237-238, Noyes Publications, Park Ridge, NJ, USA (1996).
  4. A. W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, p. 3-68, Chapman & Hall, London, UK (1997).
  5. A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering and W. G. Moore, J. Am. Ceram. Soc., 77(1), 3 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb06951.x
  6. L. M. Sheppard, Am. Ceram. Soc. Bull., 69(11), 1801 (1990).
  7. D. Kent, G. B. Schaffer, T. B. Sercombe and J. Drennan, Scripta Mater., 54(12), 2125 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.047
  8. A. Khanna and D. G. Bhat, J. Vac. Sci. Tech., 25(3), 557 (2007). https://doi.org/10.1116/1.2730513
  9. S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts and P. S. Grant, J. Eur. Ceram. Soc., 23, 961 (2003). https://doi.org/10.1016/S0955-2219(02)00207-8
  10. K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52(1), 199 (2004). https://doi.org/10.1016/j.actamat.2003.09.006
  11. P. Bengtsson and T. Johannesson, J. Therm. Spray Tech., 4(3), 245 (1995). https://doi.org/10.1007/BF02646967
  12. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p. 28-50, John Wiley & Sons, New York, NY (1995).
  13. M. Yamada, H. Nakamura, T. Yasui, M. Fukumoto and K. Takahashi, Mater. Trans., 47(7), 1671 (2006). https://doi.org/10.2320/matertrans.47.1671
  14. L. R. Krishna, D. Sen, Y. S. Rao, G. V. N. Rao and G. Sundararajan, J. Mater. Res., 17(10), 2514 (2002). https://doi.org/10.1557/JMR.2002.0366
  15. J. S. O’Dell, E. C. Schofield, T. N. McKechnie and A. Fulmer, J. Mater. Eng. Perform., 13(4), 461 (2004). https://doi.org/10.1361/10599490419946
  16. K. A. Khor and Y. Li., Mater. Lett., 48(2), 57 (2001). https://doi.org/10.1016/S0167-577X(00)00280-9

Cited by

  1. High Temperature Stability of Nitride Ceramic Materials in LiF-NdF3-Nd2O3 Molten Salts System vol.25, pp.12, 2015, https://doi.org/10.3740/MRSK.2015.25.12.694
  2. Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating vol.26, pp.5, 2016, https://doi.org/10.3740/MRSK.2016.26.5.229