DOI QR코드

DOI QR Code

Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder

AlN 분말의 고에너지 밀링에 따른 소결체의 절연 특성

  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2017.11.06
  • Accepted : 2017.11.21
  • Published : 2017.12.28

Abstract

Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at $1400^{\circ}C$, the second crystalline phase changes to compounds containing more $Al_2O_3$ when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from $1750^{\circ}C$ to $1400^{\circ}C$, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.

Keywords

References

  1. T. Watnabe, T. Kitabayashi and C. Nakayama: Jpn. J. Appl. Phys., 32 (1993) 864. https://doi.org/10.1143/JJAP.32.864
  2. Y. Imanaka, Y. Suzuki, T. Suzuki, K. Hirao, T. Tsuchiya, H. Nagata and J. S. Cross (eds), Advanced Ceramic Technologies and Products, The Ceramic Society of Japan, 2012.
  3. J. W. Lee, W. J. Lee and S. M. Lee: J. Korean Ceram. Soc., 53 (2016) 635. https://doi.org/10.4191/kcers.2016.53.6.635
  4. H. S. Kim, J. M. Chae, Y. S. Oh, H. T. Kim, K. B. Shim and S. M. Lee: Ceram. Int., 36 (2010) 2039. https://doi.org/10.1016/j.ceramint.2010.04.001
  5. C. M. Whang, W. J. Jeong and S. W. Choi: J. Korean Ceram. Soc., 31 (1994) 893.
  6. S. K. Yang and J. B. Kang: J. Korean. Ceram. Soc., 41 (2004) 118. https://doi.org/10.4191/KCERS.2004.41.2.118
  7. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie and R. A. Cutler: J. Am. Ceram. Soc., 80 (1997) 1421.
  8. W. J. Kim, D. K. Kim and C. H. Kim: J. Am. Ceram. Soc., 79 (1996) 1066. https://doi.org/10.1111/j.1151-2916.1996.tb08549.x
  9. G. A. Slack: J. Phys. Chem. Solids, 34 (1973) 321. https://doi.org/10.1016/0022-3697(73)90092-9
  10. H. Nakanto, K. Watari, H. Hayashi and K. Urabe: J. Am. Ceram. Soc., 85 (2002) 3093.
  11. W. J. Lee, S. M. Lee, K. B. Shim and H. T. Kim: J. Korean Ceram. Soc., 44 (2007) 116. https://doi.org/10.4191/KCERS.2007.44.2.116
  12. ASTM D257-14, "Standard Test Methods for DC Resistance or Conductance of Insulating Materials," ASTM International.
  13. S. M. Lee, K. H. Park, J. W. Yoo and H. T. Kim: Key Eng. Mater., 287 (2005) 253. https://doi.org/10.4028/www.scientific.net/KEM.287.253