• Title/Summary/Keyword: Al-Ni alloy

Search Result 324, Processing Time 0.019 seconds

A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System (B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Fabrication and characterization of fe-Ni Invar alloy thin films (Fe-Ni Invar 합금 박막의 증착 및 박막 특성 평가)

  • 김상섭;고영호;최장현;김병일;박용범
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Fe-Ni alloy thin films with about 3.5 $\mu\textrm{m}$ thickness were successfully grown on Al-killed steel substrates employing DC magnetron sputtering method, and then the4 film properties were characterized. The deposited film exhibited a fibre texture structure with the relationship of ${110}_\textrm{film}//{111}_\textrm{substrate}$. We found that the adhesion between the film and the substrate was fairly good considering no debonding behavior after the thermal cyclic test of 5,000 times from room temperature to $200^{\circ}C$. Also we found that the Fe-Ni alloy deposition induced a significant decrease of thermal expansion in the film processing, a new material system with much lower thermal expansion coefficient which can be applied more as shadow mask materials than an Al-killed steel sheet.

  • PDF

Interaction of oxygen with the ordered Ni3Al(111) alloy surface: adsorption and oxide islands formation at 800 K and 1000 K (Ordered Ni3Al(111) 합금표면과 산소와의 상호작용 : 800 K와 1000 K에서의 흡착과 oxide islands 형성연구)

  • Kang, B.C.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.322-329
    • /
    • 2007
  • The interaction of oxygen with the ordered $Ni_3Al(111)$ alloy surface at 800 K and 1000 K has been investigated using LEED, STM, HREELS, UPS, and PAX. The clean $Ni_3Al(111)$ surface exhibits a "$2{\times}2$" LEED pattern corresponding to the ordered bulk-like terminated surface structure. For an adsorption of oxygen at 800 K, LEED shows an unrelated oxygen induced superstructure with a lattice spacing of $2.93\;{\AA}$ in addition to the ($1{\times}1$) substrate spots. The combined HREELS and the UPS data point to an oxygen chemisorption on threefold aluminum sites while PAX confirms an islands growth of the overlayer. Since such sites are not available on the $Ni_3Al(111)$ surface, we conclude the buildup of an oxygen covered aluminum overlayer. During oxygen exposure at 1000 K, however, we observe the growth of ${\gamma}'-Al_2O_3$ structure on the reordered $Ni_3Al(111)$ substrate surface. This structure has been identified by means of HREELS and STM. The HREELS data will show that at 800 K the oxidation shows a very characteristic behavior that cannot be described by the formation of an $Al_2O_3$ overlayer. Moreover, the STM image shows a "Strawberry" structure due to the oxide islands formation at 1000 K. Conclusively, from the oxygen interaction with $Ni_3Al(111)$ alloy surface at 800 K and 1000 K an islands growth of the aluminum oxide overlayer has been found.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis (TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가)

  • 박동성;박영철;이동화;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

A Study on the Precipitation Behavior of $L2_1$-type Precipitates in B2-NiAl (B2형 NiAl에 석출한 $L2_1$형 석출상의 석출거동에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh;Lee, Ju-Hee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.345-353
    • /
    • 2009
  • The precipitates of $L2_1$-type $Ni_2AlHf$ phase in B2-ordered NiAl system has been observed by using transmission electron microscope (TEM). The hardness of as-quenched NiAl-Hf alloys is high due to the larger strengthening. However, age hardening of this alloy is not main effect to increase hardness compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlHf$ precipitates keep a lattice coherency with the NiAl matrix. The orientation relationship between the $Ni_2 AlHf$ precipitate and the NiAl matrix is <100>$_{Ni2AlHf}$//<100>$_{NiAl}$, {001}$_{Ni2AlHf}$//{001}$_{NiAl}$. By aging treatment for long time $Ni_2AlHf$ precipitates lost their coherency and change their morphology to the spherical ones surrounded by misfit dislocations. The orientation relationship between the NiAl matrix and the $Ni_2AlHf$ precipitates, however, has been kept even after longer aging time. The lattice misfit between the $Ni_2AlHf$ precipitate and the NiAl matrix has been calculated by the selected electron diffraction patterns, and the spacings of misfit dislocations is about 4.5% at 1173 K.

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.