A Study on the Precipitation Behavior of $L2_1$-type Precipitates in B2-NiAl

B2형 NiAl에 석출한 $L2_1$형 석출상의 석출거동에 관한 연구

  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University) ;
  • Han, Seung-Oh (Institute of Fusion Technology, Hoseo University) ;
  • Lee, Ju-Hee (Dept. of Mechatronics Eng., Graduate School of M.T.&M., Hoseo University)
  • 한창석 (호서대학교 국방과학기술학과) ;
  • 한승오 (호서대학교 융합기술연구소) ;
  • 이주희 (호서대학교 혁신기술경영융합대학원 메카트로닉스공학과)
  • Published : 2009.11.30

Abstract

The precipitates of $L2_1$-type $Ni_2AlHf$ phase in B2-ordered NiAl system has been observed by using transmission electron microscope (TEM). The hardness of as-quenched NiAl-Hf alloys is high due to the larger strengthening. However, age hardening of this alloy is not main effect to increase hardness compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlHf$ precipitates keep a lattice coherency with the NiAl matrix. The orientation relationship between the $Ni_2 AlHf$ precipitate and the NiAl matrix is <100>$_{Ni2AlHf}$//<100>$_{NiAl}$, {001}$_{Ni2AlHf}$//{001}$_{NiAl}$. By aging treatment for long time $Ni_2AlHf$ precipitates lost their coherency and change their morphology to the spherical ones surrounded by misfit dislocations. The orientation relationship between the NiAl matrix and the $Ni_2AlHf$ precipitates, however, has been kept even after longer aging time. The lattice misfit between the $Ni_2AlHf$ precipitate and the NiAl matrix has been calculated by the selected electron diffraction patterns, and the spacings of misfit dislocations is about 4.5% at 1173 K.

Keywords

References

  1. D. B. Miracle : Acta Metall., 41 (1993) 649 https://doi.org/10.1016/0956-7151(93)90001-9
  2. D. B. Miracle and R. Darolia : Intermetallic Compounds, 2 (1994) 53
  3. M. V. Nathal : Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, NATO ASI Series E, 213, Kluwer Academic Pub., Dordrecht, (1992) 541
  4. R. Darolia, A. Garg, M. V. Nathal, R. D. Noebe and S. V. Raj : Metall. Trans. A, 29 (1998) 179 https://doi.org/10.1007/s11661-998-0171-5
  5. A. Garg, S. V. Raj and R. D. Noebe : Fundamentals of titanium aluminides, TMS, (1998) 179
  6. R. Darolia : J. Metals, 43 (1991) 44
  7. C. Y. Cui, J. T. Guo and H. Q. Ye : J. Mater. Sci., 41 (2006) 2981 https://doi.org/10.1007/s10853-006-6732-3
  8. R. S. Polvani, W. S. Tzeng and P. R. Strutt : Metall. Trans., 7A (1976) 33
  9. C. Y. Cui, J. T. Guo and H. Q. Ye : Mater. Sci. & Eng. A, 385 (2004) 359 https://doi.org/10.1016/j.msea.2004.06.065
  10. H. T. Li, J. T. Guo and H. Q. Ye : Mater. Sci. & Eng., A, 452/453 (2007) 763 https://doi.org/10.1016/j.msea.2006.11.003
  11. M. Takeyama and C. T. Liu : I. Mater. Res., 5 (1990) 1189 https://doi.org/10.1557/JMR.1990.1189
  12. J. D. Whittenberger, M. V. Nathal, S. V. Raj and V. M. Pathare : Mater. Letters, 11 (1991) 267 https://doi.org/10.1016/0167-577X(91)90199-G
  13. I. E. Locci, R. D. Noebe, R. R. Bowman, R. V. Miner, M. V. Nathal and R. Darolia : Mat. Res. Soc. Symp. Proc., 213 (1991) 1013
  14. I. E. Locci, R. Dickerson, R. R. Bowman, J. D. Whittenberger, M. V. Nathal and R. Darolia : Mat. Res. Soc. Symp. Proc., 288 (1993) 685
  15. A. Garg, S. V. Raj and R. Darolia : Micromechanics of Advanced Materials, The Minerals Metals & Mater. Soc., (1995) 255
  16. J. D. Cotton, R. D. Noebe and M. J. Kaufman : Structural Intermetallics, The Minerals Metals & Mater. Soc., (1993) 513
  17. C. Yuxi, C. Chuanyong and L. Zhiquan : Acta Metall. Sinica 35 (1999) 1151
  18. V. Ya. Markiv and V. V. Burnashova : Izv. Akad. Nauk SSSR Met., 6 (1969) 181
  19. C. S. Han : Met. Mater. - Int. 12 (2006) 467 https://doi.org/10.1007/BF03027746
  20. M. Igarashi and H. Senba : Structural Intermetallics, The Minerals Metals & Mater. Soc., (1993) 533
  21. C. S. Han : J. Kor. Soc. Heat Treat., 20 (2007) 187
  22. R. D. Field, R. Darolia and D. F. Lahrman : Scripta Metall., 23 (1989) 1469 https://doi.org/10.1016/0036-9748(89)90112-9