• Title/Summary/Keyword: Airflow evaluation

Search Result 68, Processing Time 0.025 seconds

A Numerical Analysis on the Outside Pressure Distribution by Outdoor Wind Effect in a High-rise Residential Building (수치해석을 이용한 초고층 주거건물에서 외풍영향에 의한 외벽 압력 분포 분석)

  • Kim, Chi-Wan;Yang, Soon-Chang;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.639-645
    • /
    • 2011
  • The object of this study is to analyze and evaluate outdoor wind pressure effect in a high-rise residential building when seasonal wind blow on coast area. The target building consists of 3 tower buildings over 250m in height. For the evaluation of the outdoor wind effect, CFD simulation was performed. The results of the simulations are as follows : 1) In that case of high-rise building, horizontal stream is more affected than vertical stream. 2) In case of summer season northeasterly wind, building pressure distributions are unstable and surface pressures of outside are effected respectively. 3) In case of winter season westerly wind, building preassure differentiations are not so much because of screening effects of the B, and the C buildings. 4) In case of winter season northwesterly wind, front wind affects on the A building directly because of no obstacles.

Characteristics of Contaminant Transfer in a Clean Space for the Location of Product and Fan Filter Unit (청정공간에서 제품과 팬필터유닛의 위치에 따른 오염물질의 전파 특성)

  • Kim, Hyouk-Soon;Noh, Kwang-Chul;Lee, Young-Koo;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.452-457
    • /
    • 2008
  • We performed a study on the contaminant transfer in a clean space for the location of product and fan filter unit using computational fluid dynamics analysis. To simplify the real product moving process, three different non-moving cases regrading the locations of product were selected: no product, at the lower side, and at the upper and lower sides. And to investigate the characteristics of the contaminant transfer, the arrangement of fan filter units was varied. Local mean air-age and contaminant distribution were used as evaluation indices. From the results, the contaminant transfer to the product was the most when the products were simultaneously located at the upper and lower sides. And the contaminant was easily exhausted regardless of the location of product when the fan filter units were properly arranged at the top side of the clean space.

  • PDF

A Numerical Analysis on the Indoor Air Ventilation by Stack Effect and Outdoor Wind in a High-rise Residential Building (초고층 주거건물에서 굴뚝효과와 외풍영향에 인한 실내 환기 기류해석 및 평가에 관한 연구)

  • Kim, Chi-Wan;Lim, Tae-Kun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.828-835
    • /
    • 2011
  • The purpose of this study is to analyze and evaluate the 3 types of indoor ventilation methods such as natural, mechanical, and hybrid ventilation in high-rise building which is affected by stack effect and outdoor air pressure. For the evaluation of the ventilation capacity, CFD simulation was performed in a typical high-rise residential building. The results of the simulations are as follows: 1) Natural ventilation method is not enough to the regulation. 2) In case of mechanical ventilation, congested area is occurred but meets the regulation. 3) In case of hybrid ventilation with stack effect, all the areas of indoor meet the regulation and congested area is reduced. 4) In case of high-rise building, the differences of ventilation rate among houses in the building are not large because the mechanical ventilation is main factor.

Velopharyngeal Insufficiency Accompanied with Hypertrophic Tonsils: A Case Report (편도비대를 동반한 구개인두부전 환자의 치험례)

  • Kim, Eun Key;Koh, Kyung Suck;Park, Mi Kyong
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.660-662
    • /
    • 2005
  • It is well documented that adenoidectomy is attributed to hypernasality in certain cases, but not clear that the enlarged tonsils affect the quality of speech. Hypertrophied tonsils may cause and complicate the problem of velopharyngeal incompetency. The huge tonsils prevent lateral pharyngeal walls from a medial movement and interfere velar elevation, being hypernasality. Hyponasality developes as the tonsils encroach in nasopharyngeal space. Voluminous tonsils also interfere airflow in the oropharyneal passage and produce the phenomenon of cul-de-sac resonance or muffled sound. The authors and et al. present a case of velopharyngeal insufficiency accompanied with hypertrophic tonsils. Improving the lateral constricting pharyngeal wall and velar elevation after tonsillectomy minimized the velopharyngeal gap. Accordingly, the procedures of sphincter pharyngoplasty and palatal lengthening resolved the problem of hypernasality instead of pharyngeal flap. Tonsillectomy prior to pharyngeal flap surgery tends to reduce the postoperative airway problems. Sometimes, however, only tonsillectomy does without pharyngeal flap. Surgical approach by stages and intermittent evaluation are recommended at intervals of at least six weeks.

A Study on Evaluation of Natural Ventilation Rate and Thermal Comfort during the Intermediate Season considering by Window Layout and Open Window Ratio (학교 교실의 창호 배치 및 개방면적비에 따른 중간기 자연환기량 및 쾌적성 평가에 관한 연구)

  • Kim, Yeo-Jin;Choi, Jeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.207-214
    • /
    • 2019
  • Natural ventilation through openings such as windows in school buildings is an efficient resource for natural cooling during the intermediate season of the year. Because the natural ventilation uses the wind outside the building, the amount of ventilation will depend not only on the wind speed and wind direction but also on the window layout and open window ratio. Therefore, in this study, the natural ventilation plans of school classroom windows are divided into 4 types and 8 cases as shown in Table 1. The characteristics of cooling effect by natural ventilation are simulated by applying Energyplus's Airflow Network Model and the comfort of the occupants is evaluated by the number of hours included in the 80% acceptability range of the ASHRAE Standard 55-2010 adaptive comfort model for the weekdays (Monday-Friday) and the class hours (08: 00-19: 00). Based on the analysis results of the above, this study presents basic data related to classroom cooling plan using intermediate season natural ventilation.

Research on Odor Analysis Technology to Secure the Reliability of Air Quality Improvement in Air Conditioners (에어컨디셔너 공기질 개선의 신뢰도 확보를 위한 냄새 분석 기술 연구)

  • Kang, Seok-Hyun;Huh, Pil-Ho;Ahn, Young-Chull
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the odor of the parts and the odor of the surrounding environment were classified and verified. In order to increase the reliability of odor quantitative/qualitative analysis, the selection criteria for 5 sensory evaluators were established, and the n-Butanol control solution for each odor intensity was periodically trained to recognize the odor intensity before sensory evaluation. In addition, although various odor thresholds have been used through several studies, verification of whether the odor intensity value obtained through GC/MSD analysis is similar to the degree to which a person directly smells and feels it. It is important to select the odor threshold that has the best correlation with the odor intensity calculated by the person smelling the odor. Finally, sampling and measuring flowing airflow and temporary odors such as odor component analysis was experimentally difficult due to limited collection space and differences in concentration of generated components. In this study, a quantitative analysis was made possible by using the low temperature concentration (cooling) trap method. Through this, it was confirmed that the correlation with the actual odor intensity was not caused by the product itself, but by the environmental factor discharged from the product after creating the odor environment.

Ventilation Efficiency Evaluation of Domestic Limestone Mine Using Tracer Gas Method (추적가스법을 적용한 국내 석회석 광산의 환기성능 평가 연구)

  • Kim, Young-su;Roh, Jang-hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.274-282
    • /
    • 2016
  • Natural ventilation is employed in limestone mines that have been currently operated in Korea, and there has been a growing issue of a significantly weak airflow caused by the large-scale excavation. Thus, the air quality in the working area is considerably poor. In order to improve this circumstance, it is mainly required to examine ventilation performance. In this study, the examination of ventilation efficiency was conducted by using tracer gas method. The result of this work indicated detailedly the ventilation problems in research mine, in that extremely low air velocity, recirculation, and air change rate were evaluated quantitatively using tracer gas. Therefore the ventilation performance evaluation using tracer gas can be opted as a precise method to improve the working area in mines.

Performance Evaluation of a Hybrid Dust Collector for Removal of Airborne Dust in Urban Railway Tunnels (도시철도 터널 미세먼지 제거용 하이브리드형 집진장치의 성능평가)

  • Woo, Sang Hee;Kim, Jong Bum;Jang, Hong Ryang;Kwon, Soon Bark;Yook, Se-Jin;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.433-439
    • /
    • 2017
  • Urban railway tunnels are polluted by resuspension of deposited bottom dust or newly generated wear dust. A hybrid type dust collector consisting of a baffle and an electrostatic precipitator was developed to remove these types of airborne dust when trains are running in the tunnel. Since dust collection efficiency of the hybrid dust collector is inversely proportional to the airflow rate, the relationship between airflow rate and dust collection efficiency was experimentally investigated for two baffle models. Collection efficiencies for dust larger than $0.5{\mu}m$ for the hybrid dust collector model A1, operated at 3.4 m/s, were greater than 30%; those for the hybrid dust collector model A2, operated at 4.7 m/s, were higher than 20%. When the applied voltage was 13 kV, the amounts of $PM_{10}$ collected with model A1 and model A2 dust collectors were estimated at $253{\mu}g$ and $242{\mu}g$ per hour, respectively.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.