• Title/Summary/Keyword: Air pollution particle

Search Result 299, Processing Time 0.028 seconds

Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution (솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰)

  • Chung, David;Choi, Jeong-Heui;Lee, Jang-Ho;Lee, Soo-Yong;Lee, Ha-Eun;Park, Ki-Wan;Shim, Kyu-Young;Lee, Jong-Chun
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2018
  • The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to $200{\mu}m$, and the volume percentage of particles ${\leq}10$ was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_{16}$ and from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_7$.

Numerical Study of Distribution Characteristics of Pulverized Coal According to Operation Condition in PM Burners (저공해 버너에서의 운전조건에 따른 미분탄 분배특성에 관한 수치 해석 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Ho-Young;Seo, Sang-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.491-501
    • /
    • 2011
  • We performed numerical simulation using a DPM (discrete phase model) to identify the optimal operation ranges in two representative PM burners widely used in domestic 500-MW pulverized coal-fired power plants. Recently there has been an increased utilization of low-cost coals such as sub-bituminous coal. We investigate the effects of coal blends on the distribution ratio of coal to air by varying the mass flow rates of pulverized coal and primary air and the particle size. We present and discuss optimal conditions for the distribution ratio of coal to air in PM burners.

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

A Study on the Smog Reduction Strategies in China (중국의 스모그 저감정책에 대한 고찰)

  • Jeon, So Hyeon;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.11 no.3
    • /
    • pp.63-75
    • /
    • 2015
  • Atmospheric environment in Korea is influenced by outside, especially China. The concentrations of air pollutants in China have showed decreasing trends since 2000. However, these concentration levels in China are still higher than other developed countries. The Chinese Government has tried several measures to control the air pollution. In this study, the details of the amendments and smog reduction strategies in China, especially for Beijing are reviewed and the strategies for Korean side to promote cooperation in Northeast Asia are suggested and discussed. The Chinese State Council amended the Environmental Protection Provisions and Clean Air Act and announced The Action Plan for Air Pollution Control (2013-2017), focusing on three key regions, Beijing-Tianjin-Hebei area (Jing-Jin-Ji), Yangtze River Delta (YRD) and Pearl River Delta (PRD). These policy actions and plan are mainly for the reducing coal usage and emissions from vehicles. It is suggested that, Korea should actively promote multi-national cooperation in the region to take an initiative role in environmental areas.

Characteristics of Wind Speed and PM10 Concentration underneath Railway Trains (도시철도 차량 하부의 풍속 및 미세먼지 농도 특징)

  • Kim, Jong Bum;Woo, Sang Hee;Jang, Hong-Ryang;Chou, Jin-Won;Hwang, Moon Se;Park, Hyung-Koo;Yoon, Hwa Hyeon;Jung, Joon-Sig;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • Since operation of railway trains is a major source of particle pollution in tunnel air, a particle removal device can be an effective measure to remove wear particles. To obtain design conditions of the particle removal device that will be installed underneath the railway trains, the wind speed and particle concentration underneath the trains were investigated using a three-dimensional ultrasonic anemometer and a DustTrak aerosol monitor, respectively. The measurements were made for the trains running on Seoul Metropolitan Subway Line 5 on February 10, 2015. The data were analyzed according to the track geometry (straight, curved) and train speed pattern (acceleration, cruising, and deceleration) between stations. Train speed was also analyzed. The average wind speed and $PM_{10}$ concentration underneath the trains were ~30% of the train speed and ${\sim}200{\mu}g/m^3$ for both straight and curved sections. Average $PM_{10}$ concentration for deceleration sections was higher than that for acceleration sections.

Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols between Asian Dust and Non-Asian Dust Periods at Background Area of Korea

  • Kim, Won-Hyung;Song, Jung-Min;Ko, Hee-Jung;Kim, Jin Seog;Lee, Joung Hae;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3651-3656
    • /
    • 2012
  • The size-segregated atmospheric aerosols have been collected at 1100 m site of Mt. Halla in Jeju, a background area in Korea, using 8-stage cascade impact air sampler during Asian dust and non-Asian dust storm periods. Their ionic and elemental species were analyzed, in order to examine the pollution characteristics and composition change between Asian dust and non-Asian dust periods. The major ionic species such as nss-$SO_4{^{2-}}$, $NH_4{^+}$, and $K^+$ were predominantly distributed in the fine particles (below $2.1{\mu}m$ diameter), and besides the $NO_3{^-}$ was distributed more in coarse particle fraction than fine particle. On the other hand, the typical soil and marine species i.e., nss-$Ca^{2+}$, $Na^+$, $Cl^-$, and $Mg^{2+}$, were mostly existed in the coarse particles (over $2.1{\mu}m$ diameter). As well in the elemental analysis of aerosols, the major soil-originated Al, Fe, Ca, and others showed prominently high concentrations in the coarse particle fraction, whereas the anthropogenic S and Pb were relatively high in the fine particle fraction. From the comparison of aerosol compositions between Asian dust and non-Asian dust periods, the concentrations of the soil-originated species such as nss-$Ca^{2+}$, Al, Ca, Fe, Ti, Mn, Ba, Sr have increased as 2.7-4.2 times during the Asian dust periods. Meanwhile the concentrations of nss-$SO_4{^{2-}}$ and $NO_3{^-}$ have increased as 1.4 and 2.0 times, and on the contrary $NH_4{^+}$ concentrations have a little bit decreased during the Asian dust periods. Especially the concentrations of both soil-originated ionic and elemental species increased noticeably in the coarse particle mode during the dust storm periods.

Numerical Study on the Impact of Power Plants on Primary PM10 Concentrations in South Korea

  • Park, Il-Soo;Song, Chang-Keun;Park, Moon-Soo;Kim, Byung-Gon;Jang, Yu-Woon;Ha, Sang-Sub;Jang, Su-Hwan;Chung, Kyung-Won;Lee, Hyo-Jung;Lee, Uh-Jeong;Kim, Sang-Kyun;Kim, Cheol-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.255-273
    • /
    • 2018
  • To develop effective emission abatement strategies for eighteen coal-fired power plants located throughout Korea, power plant emission data and TAPM (The Air Pollution Model) were used to quantify the impact of emission reductions on primary $PM_{10}$ concentrations. TAPM was validated for two separate time periods: a high $PM_{10}$ concentration period from April 7 to 12, 2016, and a low $PM_{10}$ concentration period from June 1 to June 6 2016. The validated model was then used to analyze the impacts of five applicable power plant shut-down scenarios. The results showed that shut-down of four power plants located within the Seoul metropolitan area (SMA) would result in up to 18.9% reduction in maximum $PM_{10}$ concentrations, depending on synoptic conditions. A scenario for the shutdown of a single low stack height with highest-emission power plant located nearest to Seoul showed a small impact on averaged $PM_{10}$ concentrations (~1%) and 4.4% ($0.54{\mu}g/m^3$) decrease in maximum concentration. The scenario for four shutdowns for power plants aged more than 30 years within SMA also showed a highest improvement of 6.4% ($0.26{\mu}g/m^3$ in April) in averaged $PM_{10}$ concentrations, and of 18.9% ($2.33{\mu}g/m^3$ in June) in maximum concentration, showing almost linear relationship in and around SMA. Reducing gaseous air pollutant emissions was also found to be significant in controlling high $PM_{10}$ concentrations, indicating the effectiveness of coreduction of power plant emissions together with diesel vehicle emissions in the SMA. In addition, this study is implying that secondary production process generating $PM_{10}$ pollution may be a significant process throughout most regions in Korea, and therefore concurrent abatement of both gas and particle emissions will result in more pronounced improvements in air quality over the urban cities in South Korea.

Emission Characteristics of PMs and Heavy Metals from Industrial Hazardous Waste Incinerators (산업 폐기물 소각시설의 입자상 물질 및 중금속의 배출특성)

  • 유종익;이성준;김기헌;장하나;석정희;석광설;홍지형;김병화;서용칠
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.213-221
    • /
    • 2002
  • The emission characteristics of particulate matter (PMs) and heavy metals from hazardous industrial wast incinerators were investigated. The particle size distribution (PSD) of PM-10 showed different patterns for two tripes of incinerators; stoker and rotary kiln. However both types showed bimodal form at inlet of air pollution control devices (APCD) and each peak (mode) is located at smaller than 1 ${\mu}{\textrm}{m}$ and near 10 ${\mu}{\textrm}{m}$. It could explain the growth of fine PM by nucleation/coagulation/condensation of metal vapors for fine mode. The PSD of PM-10 after APCD was also influenced by APCD types that had different collection mechanism, and both electrostatic precipitator and bag filter showed less collection efficiency for particles ranged from 0.2 to 0.4 ${\mu}{\textrm}{m}$ and led to a mode in the range of 0.2 to 0.8 ${\mu}{\textrm}{m}$. However the hag filter showed two modes of PSD, while the electrostatic precipitator had one peak. The PMs and heavy metals emission factors, the representative value of emission quantity for sources, for tested facilities were developed. The emission factor of uncontrolled total PM and PM-10 were 14.7 and 7.05 kg/ton waste, respectively. The emission factors from this study were a little bit different with those from US EPA AP-42. It may thus be appropriate to use these results in the course of developing national emission factors.

A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC (EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구)

  • Lee, Byung-Ho;Yi, Chung-Seub;Kim, Bo-Han;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.