• Title/Summary/Keyword: Air modeling

Search Result 1,211, Processing Time 0.025 seconds

Virtual-Constructive Simulation Interoperation for Aircombat Battle Experiment (Virtual-Constructive 시뮬레이션 연동을 활용한 공중전 전투 실험)

  • Kim, Dongjun;Shin, Yongjin;An, Kyeong-Soo;Kim, Young-Gon;Moon, Il-Chul;Bae, Jang Won
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.139-152
    • /
    • 2021
  • Simulations enable virtually experiencing rare events as well as analytically analyzing such events. Defense modeling and simulation research and develops the virtual and the constructive simulations to support these utilizations. These virtual and constructive(VC) simulations can interoperate to simultaneously virtual combat experience as well as evaluations on tactics and intelligence of combat entities. Moreover, recently, for artificial intelligence researches, it is necessary to retrieve human behavior data to proceed the imitation learning and the inverse reinforcement learning. The presented work illustrates a case study of VC interoperations in the aircombat scenario, and the work analyze the collected human behavior data from the VC interoperations. Through this case study, we discuss how to build the VC simulation in the aircombat area and how to utilize the collected human behavior data.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

60-Year Research History and Future Prospects in Environment Field in Korean Meteorological Society (기상학회 60년간 환경분야 연구 역사와 전망)

  • Cheol-Hee Kim;Rokjin Park;Sang-Woo Kim;Young-Hee Lee;Sang-Hyun Lee;Chang-Keun Song
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.173-195
    • /
    • 2023
  • Research papers in the field of atmospheric environment published in three Journals: Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of the Atmospheric Sciences, are all summarized over period of 60 years since the establishment of Korea Meteorological Society (KMS) in 1963. In addition, current research trends and future outlook in the atmospheric environment field has been also highlighted. The results of historical records published in three KMS journals indicated that the activities, contents, and scope of researches carried out by KMS members in the field of atmospheric environment have yielded the enormous and rapid progress in each of the all four areas over 60 years. In particular, as the chronological progress of observational instruments and availability of satellite data such as from GEMS can be a great asset to deepen the observational and modeling researches in the current and future studies, it is highly anticipated that the more progressive and in-depth studies can be achievable to abate the air pollutants over the Korea as well as northeast Asia.

A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System (Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구)

  • Hong Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 2023
  • In this paper, the structural-thermal-optical performance analysis of the mirror was performed by setting the laser heat source as the boundary condition of the thermal analysis. For the laser heat source model, the Beer-Lambert model considering semi-transparent optical material based on Gaussian beam was selected as the boundary condition, and the mechanical part was not considered, to analyze the performance of only the mirror. As a result of the thermal analysis, thermal stress and thermal deformation data due to temperature change on the surface of the mirror were obtained. The displacement data of the surface due to thermal deformation was fitted to a Zernike polynomial to calculate the optical performance, through which the performance of the mirror when a high-energy laser was incident on the mirror could be predicted.

Transient Stability Analysis of Vessel Power System Using Alternative Marine Power (육상전원공급장치(AMP) 이용한 선내 전원 공급 시 계통 안정도 분석)

  • Seung-pyo Kang;Jang-mok Kim;Hyun-jun Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.215-222
    • /
    • 2023
  • Alternative marine power (AMP) is continuously used in ports and on docks because of regulations on global ship emission reduction. In Korea, the use of AMP is also mandatory under the Special Act on Port Air Quality Improvement, and efforts are under way in connection with various eco-friendly ships, such as electric-propulsion ships. In this study, AC load flow analysis was performed by modeling the situation in which onboard power is supplied through AMP. This analysis made it possible to study the electrical parameters and losses when power was supplied to the ship. In addition, through a transient stability analysis, the high-speed generation transfer limit value for uninterruptible conversion through onboard generators in the event of a system accident was derived. The results obtained when it was applied are presented

Comparison of the Free-Fall Impact Force Applied to a Multicopter PAV According to External Airbag Folding Method (외부 에어백 폴딩 방식에 따른 자유 낙하 충돌 시 멀티콥터형 개인용 항공기에 가해지는 충격력 비교)

  • Jang, Yoon Ho;Kim, Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.28-39
    • /
    • 2022
  • With the development of small multicopter PAV (Personal Air Vehicle), it is necessary to develop safety-related devices for manned rotorcraft. In this study, we assumed that an external airbag can be installed in a small multicopter PAV, and using LS-DYNA's Airbag Folding Application, we performed a free-fall collision analysis by modeling the airbag shapes consisting or Roll, Zigzag, and Sigma. There was no significant difference in the final airbag deployment time of the three models. However, when it collides with the ground during deployment, the Sigma fold type external airbag had the fastest deployment speed, applying the most impact force to the PAV, while the Roll fold type external airbag applied the smallest impact force to the PAV.

Numerical modeling of rapidly varied flow using the SST turbulence model and a hybrid free-surface capturing approach (자유수면 포착기법과 난류모형을 이용한 급변류 수치모델링)

  • Kim, Byung Ju;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.149-149
    • /
    • 2020
  • 하천에서 물 흐름이 보와 댐과 같은 수공구조물을 지날 때 일반적으로 흐름상태에 다양하고 급진적인 변화가 발생한다. 특히 흐름이 구조물을 지나면서 사류(supercritical flow)로 변하고 다시 상류(subcritical flow)로 복원되면서 일어나는 도수(hydraulic jump) 현상은 수위의 급변화, 흐름 에너지 소산, 변동성이 강한 압력 분포 등이 특징이다. 이러한 흐름 특성들은 보나 여수로와 같은 수공구조물 자체의 성능뿐만 아니라 이들 수공구조물의 하류에서 발생하는 국부세굴로 인해 구조물의 안정성에 부정적인 영향을 줄 수 있다. 따라서 수공구조물을 설계할 때는 이들 구조물을 통과하는 흐름의 비정상 난류 흐름 특성을 정확하게 해석하여 반영하여야 한다. 이 연구에서는 k-omega SST 난류 모형과 자유수면의 급격한 변동을 해석하기 위한 하이브리드-VOF(hybrid volume of fluid)기법을 이용하여 도수현상을 수치적으로 재현하고자 한다. 기존 CFD(computational fluid Dynamics) 모델링에서는 자유수면 변동의 영향을 고려하기 위해 VOF 기법을 많이 사용하였다. 하지면 전통적인 VOF 기법은 다상흐름(multiphase flow)을 오직 부피분율(volume fraction)의 함수로만 고려하며 모의함으로써 강한 수면변동뿐만 아니라 공기연행(air entrainment)를 동반하는 난류 흐름을 모의하는데는 한계가 있다. 이 연구에서 이용하는 Eulerian 기법인 하이브리드 VOF 기법은 물과 공기의 각 상에 대하여 흐름 특성들을 개별적으로 계산하기 때문에 공기연행을 포함한 급변류 흐름에서 전통적인 VOF 기법보다 적용성이 우수하다. 이와 같은 난류모형과 자유수면 포착기법을 이용하여 3차원 비정상 난류 흐름 수치모형을 구축하여 수공구조물 주변에서 발생하는 강한 공기연행과 난류 특성를 보이는 급변류를 수치적으로 재현한다. 이 연구는 계산된 수치해석 결과를 기존 수리실험 결과와 비교하여 수치모형의 적용성을 평가하고 도수 현상에서 발생하는 독특한 흐름 특성을 제시한다.

  • PDF