Acknowledgement
The authors acknowledge the financial supports of the FNRSDT/DGRSDT within the framework of ERANETMED3 (Project.ERANETMED3-166EXTRASEA)
References
- Ahmed, F.E., Lalia, B.S., Hashaikeh R. and Hilal N. (2020), "Alternative heating techniques in membrane distillation: A review", J. Desal., 496, 1-14. https://doi.org/10.1016/j.desal.2020.114713.
- Alotaibi, S., Ibrahim, O.M., Luo, S. and Luo, T. (2017), "Modeling of a continuous water desalination process using directional solvent extraction", J. Desal., 420, 114-124. https://doi.org/10.1016/j.desal.2017.07.004.
- Anton, A.K. and Olga, M.K.R. (2018), "An industrial perspective on membrane distillation processes", J. Chem. Tech. Biotech, 93(8), 2047-2055. https://doi.org/10.1002/jctb.5674.
- Attia, H., Osman, M. S., Johnson, D.J., Wright, C. and Hilal, N. (2017), "Modelling of air gap membrane distillation and its application in heavy metals removal", J. Desal., 42, 427-436. https://doi.org/10.1016/j.desal.2017.09.027.
- Cecilia, M.S.A., Luiza, B.G., Ramatisa, L.R., Cintia, S.M., and Miriam, C.S.A. (2019), "Bi-dimensional modelling of the thermal boundary layer and mass flux prediction for direct contact membrane distillation", Int. J. Heat Mass Transf., 141, 1205-1215. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.014.
- Doornbusch, G.J., Bel, M., Tedesco, M., Post, J.W., Borneman, Z. and Nijmeijer, K. (2020), "Effect of membrane area and membrane properties in multistage electrodialysis on seawater desalination performance", J. Membr. Sci., 611, 118303. https://doi.org/10.1016/j.memsci.2020.118303.
- ElKadi, K., Janajreh, I. and Hashaikeh, R. (2020), "Numerical simulation and evaluation of spacer-filled direct contact membrane distillation module", Appl. Water. Sci., 10, 174. https://doi.org/10.1007/s13201-020-01261-9.
- Hesam, B.H., Asadi, A.,Shen, Z.G., Rahnama, M., Djilali, N. and Sui, P. (2021), "Modeling of heat and mass transfer in direct contact membrane distillation: Effect of counter diffusion velocity", J. Desal. Water Treat., 216, 71-82. http://doi.org/10.5004/dwt.2021.26816.
- Iguchi, C.Y., Santos, W.N. and Gregorio, R. (2007), "Determination of thermal properties of pyroelectric polymers, copolymers and blends by the laser flash technique", Polym. Test., 26, 788-792. https://doi.org/10.1016/j.polymertesting.2007.04.009.
- Im, B.G., Lee, J.G., Kim, Y.D. and Kim, W.S. (2018), "Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane", J. Membr. Sci., 565, 14-24. http://doi.org/10.1016/j.memsci.2018.08.006.
- Janajreh, I., ElKadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance", J. Desal., 424, 122- 130. https://doi.org/10.1016/j.desal.2017.10.001.
- Janajreh, I., Suwwan, D. and Hashaikeh, R. (2016), "Assessment of direct contact membrane distillation under different configurations, velocities, and membrane properties", Appl. Energy, 185, 2058-2073. https://doi.org/10.1016/j.apenergy.2016.05.020.
- Jincheng, L., Johan, V., Steven, C.D., Tzahi, Y.C. and Nils, T. (2019), "Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation", J. Membr. Sci., 591, 117150. https://doi.org/10.1016/j.memsci.2019.05.074.
- Kalla, S. (2021), "Use of membrane distillation for oily wastewater treatment-a review", J. Env. Chem. Eng., 9(1), 1-59. https://doi.org/10.1016/j.jece.2020.104641.
- Li, Z., Rana, D., Matsuura, T., Teoh, C.Q.L. and Chung, T. (2019), "The performance of polyvinylidene fluoride- polytetrafluoroethylene nanocomposite distillation membranes: An experimental and numerical study", Sep. Purif. Tech., 226, 192-208. https://doi.org/10.1016/j.seppur.2019.05.102.
- Marni-Sandid, A., Bassyouni, M., Nehari, D., Elhenawy, Y., (2021a) "Experimental and simulation study of multichannel air gap membrane distillation process with two types of solar collectors", Energy Convers. Manag., 24, 31-14. https://doi.org/10.1016/j.enconman.2021.114431.
- Marni-Sandid, A., Nehari, D., Elmeriah A. and Remlaoui, A. (2021c), "Dynamic simulation of an air-gap membrane distillation (AGMD) process using photovoltaic panels system and flat plate collectors", J. Therm. Eng., 7, 117-133. https://doi.org/10.18186/thermal.870383.
- Marni-Sandid, A., Nehari, T. and Nehari, D., (2021b) "Simulation study of an air-gap membrane distillation system for seawater desalination using solar energy", J. Desal., Water Treat., 229, 40-51. https://doi.org/10.5004/dwt.2021.27394.
- Mokhless, B., Sofiene, K., Mohamedn B.B.H. and Habib, B.B. (2018), "Simulation and experimental study of an AGMD membrane distillation pilot for the desalination of seawater or brackish water with zero liquid discharged", Int. J. Heat Mass Transf., 54, 3521-3531. https://doi.org/10.1007/s00231-018-2383-6.
- Parisa, B., Niloofar, T.A., Mohammad, A.M. and Mohammad, R.R., (2019), "Water and wastewater treatment systems by novelintegrated Membrane Distillation (MD)", J. Chem. Eng., 3(8), 1-36. http://doi.org/10.3390/chemengineering3010008.
- Wu, J., Zodrow, K.R., Szemraj, P.B., Li, Q. (2017), "Photothermal nanocomposite membranes for direct solar membrane distillation", J. Mater. Chem. A., 5, 23712-23719. https://doi.org/10.1039/C7TA04555G.
- Yang, L. M.,Shu, C., Yang, W. M. and Wu,J.(2019), "Simulation of conjugate heat transfer problems by lattice Boltzmann flux solver", Int. J. Heat Mass Transf., 137, 895-907. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.003.
- Zhou, J., Wang, F., Noor, N. and Zhang, X. (2020), "An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation", J. Energy, 194, 1-9. https://doi.org/10.1016/j.energy.2019.116891.