DOI QR코드

DOI QR Code

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni (Department of Mechanical Engineering, University of Ain Temouchent) ;
  • Neharia, Driss (Department of Mechanical Engineering, University of Ain Temouchent) ;
  • Nehari, Taieb (Department of Mechanical Engineering, University of Ain Temouchent)
  • Received : 2021.11.23
  • Accepted : 2022.09.13
  • Published : 2022.09.25

Abstract

The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Keywords

Acknowledgement

The authors acknowledge the financial supports of the FNRSDT/DGRSDT within the framework of ERANETMED3 (Project.ERANETMED3-166EXTRASEA)

References

  1. Ahmed, F.E., Lalia, B.S., Hashaikeh R. and Hilal N. (2020), "Alternative heating techniques in membrane distillation: A review", J. Desal., 496, 1-14. https://doi.org/10.1016/j.desal.2020.114713.
  2. Alotaibi, S., Ibrahim, O.M., Luo, S. and Luo, T. (2017), "Modeling of a continuous water desalination process using directional solvent extraction", J. Desal., 420, 114-124. https://doi.org/10.1016/j.desal.2017.07.004.
  3. Anton, A.K. and Olga, M.K.R. (2018), "An industrial perspective on membrane distillation processes", J. Chem. Tech. Biotech, 93(8), 2047-2055. https://doi.org/10.1002/jctb.5674.
  4. Attia, H., Osman, M. S., Johnson, D.J., Wright, C. and Hilal, N. (2017), "Modelling of air gap membrane distillation and its application in heavy metals removal", J. Desal., 42, 427-436. https://doi.org/10.1016/j.desal.2017.09.027.
  5. Cecilia, M.S.A., Luiza, B.G., Ramatisa, L.R., Cintia, S.M., and Miriam, C.S.A. (2019), "Bi-dimensional modelling of the thermal boundary layer and mass flux prediction for direct contact membrane distillation", Int. J. Heat Mass Transf., 141, 1205-1215. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.014.
  6. Doornbusch, G.J., Bel, M., Tedesco, M., Post, J.W., Borneman, Z. and Nijmeijer, K. (2020), "Effect of membrane area and membrane properties in multistage electrodialysis on seawater desalination performance", J. Membr. Sci., 611, 118303. https://doi.org/10.1016/j.memsci.2020.118303.
  7. ElKadi, K., Janajreh, I. and Hashaikeh, R. (2020), "Numerical simulation and evaluation of spacer-filled direct contact membrane distillation module", Appl. Water. Sci., 10, 174. https://doi.org/10.1007/s13201-020-01261-9.
  8. Hesam, B.H., Asadi, A.,Shen, Z.G., Rahnama, M., Djilali, N. and Sui, P. (2021), "Modeling of heat and mass transfer in direct contact membrane distillation: Effect of counter diffusion velocity", J. Desal. Water Treat., 216, 71-82. http://doi.org/10.5004/dwt.2021.26816.
  9. Iguchi, C.Y., Santos, W.N. and Gregorio, R. (2007), "Determination of thermal properties of pyroelectric polymers, copolymers and blends by the laser flash technique", Polym. Test., 26, 788-792. https://doi.org/10.1016/j.polymertesting.2007.04.009.
  10. Im, B.G., Lee, J.G., Kim, Y.D. and Kim, W.S. (2018), "Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane", J. Membr. Sci., 565, 14-24. http://doi.org/10.1016/j.memsci.2018.08.006.
  11. Janajreh, I., ElKadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance", J. Desal., 424, 122- 130. https://doi.org/10.1016/j.desal.2017.10.001.
  12. Janajreh, I., Suwwan, D. and Hashaikeh, R. (2016), "Assessment of direct contact membrane distillation under different configurations, velocities, and membrane properties", Appl. Energy, 185, 2058-2073. https://doi.org/10.1016/j.apenergy.2016.05.020.
  13. Jincheng, L., Johan, V., Steven, C.D., Tzahi, Y.C. and Nils, T. (2019), "Computational fluid dynamics simulations of polarization phenomena in direct contact membrane distillation", J. Membr. Sci., 591, 117150. https://doi.org/10.1016/j.memsci.2019.05.074.
  14. Kalla, S. (2021), "Use of membrane distillation for oily wastewater treatment-a review", J. Env. Chem. Eng., 9(1), 1-59. https://doi.org/10.1016/j.jece.2020.104641.
  15. Li, Z., Rana, D., Matsuura, T., Teoh, C.Q.L. and Chung, T. (2019), "The performance of polyvinylidene fluoride- polytetrafluoroethylene nanocomposite distillation membranes: An experimental and numerical study", Sep. Purif. Tech., 226, 192-208. https://doi.org/10.1016/j.seppur.2019.05.102.
  16. Marni-Sandid, A., Bassyouni, M., Nehari, D., Elhenawy, Y., (2021a) "Experimental and simulation study of multichannel air gap membrane distillation process with two types of solar collectors", Energy Convers. Manag., 24, 31-14. https://doi.org/10.1016/j.enconman.2021.114431.
  17. Marni-Sandid, A., Nehari, D., Elmeriah A. and Remlaoui, A. (2021c), "Dynamic simulation of an air-gap membrane distillation (AGMD) process using photovoltaic panels system and flat plate collectors", J. Therm. Eng., 7, 117-133. https://doi.org/10.18186/thermal.870383.
  18. Marni-Sandid, A., Nehari, T. and Nehari, D., (2021b) "Simulation study of an air-gap membrane distillation system for seawater desalination using solar energy", J. Desal., Water Treat., 229, 40-51. https://doi.org/10.5004/dwt.2021.27394.
  19. Mokhless, B., Sofiene, K., Mohamedn B.B.H. and Habib, B.B. (2018), "Simulation and experimental study of an AGMD membrane distillation pilot for the desalination of seawater or brackish water with zero liquid discharged", Int. J. Heat Mass Transf., 54, 3521-3531. https://doi.org/10.1007/s00231-018-2383-6.
  20. Parisa, B., Niloofar, T.A., Mohammad, A.M. and Mohammad, R.R., (2019), "Water and wastewater treatment systems by novelintegrated Membrane Distillation (MD)", J. Chem. Eng., 3(8), 1-36. http://doi.org/10.3390/chemengineering3010008.
  21. Wu, J., Zodrow, K.R., Szemraj, P.B., Li, Q. (2017), "Photothermal nanocomposite membranes for direct solar membrane distillation", J. Mater. Chem. A., 5, 23712-23719. https://doi.org/10.1039/C7TA04555G.
  22. Yang, L. M.,Shu, C., Yang, W. M. and Wu,J.(2019), "Simulation of conjugate heat transfer problems by lattice Boltzmann flux solver", Int. J. Heat Mass Transf., 137, 895-907. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.003.
  23. Zhou, J., Wang, F., Noor, N. and Zhang, X. (2020), "An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation", J. Energy, 194, 1-9. https://doi.org/10.1016/j.energy.2019.116891.