DOI QR코드

DOI QR Code

A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System

Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구

  • Hong Dae Gi (Ground Technology Research Institute, Agency for Defense Development)
  • 홍대기 (국방과학연구소 지상기술연구원)
  • Received : 2023.04.19
  • Accepted : 2023.08.17
  • Published : 2023.08.31

Abstract

In this paper, the structural-thermal-optical performance analysis of the mirror was performed by setting the laser heat source as the boundary condition of the thermal analysis. For the laser heat source model, the Beer-Lambert model considering semi-transparent optical material based on Gaussian beam was selected as the boundary condition, and the mechanical part was not considered, to analyze the performance of only the mirror. As a result of the thermal analysis, thermal stress and thermal deformation data due to temperature change on the surface of the mirror were obtained. The displacement data of the surface due to thermal deformation was fitted to a Zernike polynomial to calculate the optical performance, through which the performance of the mirror when a high-energy laser was incident on the mirror could be predicted.

본 논문에서는 열해석의 하중조건으로 레이저 열원을 설정하여 반사경의 구조-열-광학 성능 분석을 수행하였다. 레이저 열원 모델은 가우시안 빔을 바탕으로 반투명한 소재를 고려한 Beer-Lambert 법칙을 적용하여 하중조건으로 선정하였으며, 반사경만의 성능 분석을 위하여 기구부는 고려하지 않았다. 열변형해석을 수행하여 반사경 표면의 온도 변화로 인한 열응력과 열변형 데이터를 얻었다. 열변형에 의한 반사경 표면의 변위 데이터를 Zernike 다항식에 피팅하여 파면오차를 계산하였으며, 이를 통해 고에너지 레이저가 반사경으로 입사될 때 반사경의 광학 성능을 예측할 수 있었다.

Keywords

Acknowledgement

본 논문은 2023년 정부의 재원으로 수행된 연구 결과입니다.

References

  1. J. H.. Choi and Y. S. Kim, "Wavefront Distortion Caused by High Energy Laser Beam in the Relay Mirrors of the Laser Beam Director," Korean Journal of Optics and Photonics, vol. 19, No. 2, pp. 144-149, Apr. 2008. https://doi.org/10.3807/HKH.2008.19.2.144
  2. Y.-N. Liu, E. Kannatey-Asibu Jr., "Laser Beam Welding with Simultaneous Gaussian Laser Preheating," Journal of Heat and Mass Transfer, Vol. 115, No. 1, pp. 34-41, Feb 1993. https://doi.org/10.1115/1.2910666
  3. S. Chang, "Degradation in the M2 Factor of a Laser Beam by a Spherically Aberrated Optical Surface," New Physics:Sae Mulli(The Korean Physical Society), Vol. 60, No. 11, pp. 1216-1219, Nov. 2010. https://doi.org/10.3938/NPSM.60.1216
  4. Benoit Cosson, Andre C. A. Asseko, Mylene Lagardere, M. Dauphin, "3D Modeling of Thermoplastic Composites Laser Welding Process-A Ray Tracing Method Coupled with Finite Element Method," Optics&Laser Technology, Vol. 119, No. 10:5585, pp. 1-8, Nov 2019.
  5. O. Fuad, W. Katrin, L. Tobias, S. Michael, D. Dietmar, K. Carolin, "Modeling of Laser Beam Absorption in a Polymer Powder Bed," Polymers, Vol. 10, No. 7:784, Jul 2018.
  6. H. O. McMahon, "Thermal Radiation from Partially Transparent Reflecting Bodies," Journal of the Optical Society of America, Vol. 40, No. 6, pp 376-380, Feb 1950. https://doi.org/10.1364/JOSA.40.000376
  7. Paul Klocek, Handbook of Infrared Optical Materials, 1st Ed., CRC Press, pp. 483-586, 2019.
  8. D. G. Hong, J. H. Hwang, "Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera," Journal of Aerospace System Engineering, Vol.12, No.3, pp. 9-17, Aug 2018.
  9. Robert J. Noll, "Zernike Polynomials and Atmospheric Turbulence," Journal of Optical Society of America, Vol. 66, No. 3, pp. 207-211, Oct 1976. https://doi.org/10.1364/JOSA.66.000207
  10. V. N. Mahajan, "Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils," Applied Optics, Vol. 33, No. 34, pp. 8121-8124, Dec 1994. https://doi.org/10.1364/AO.33.008121