• Title/Summary/Keyword: Air flow sensor

Search Result 143, Processing Time 0.027 seconds

Fabrication and Characteristics of Hot-film Air Flow Sensor for Automobile (자동차용 박막 히터형 공기유량센서의 제작 및 특성)

  • Kim, Hyung-Pyo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.394-399
    • /
    • 1999
  • An automobile hot-film air flow sensor is deposited with platinum by sputtering method, patterned by photoresisted lift-off method, annealed in $1,000^{\circ}C$ and passivated with PI-2723. The TCR of the fabricated hot-film is about $3500\;ppm/^{\circ}C$. In the experiment, the output voltage of the sensor is in proportional to the fourth power root in the air mass flow range of 300 kg/h. The error in the full flow range is about ${\pm}0.7%$. In the range of air temperature of $-20^{\circ}C{\sim}120^{\circ}C$, the error is about ${\pm}1%$ that is ${\pm}2%$ lower than that of the reference sensor. Therefore, the fabricated hot-film air flow sensor satisfies the specification for automobile. Lower temperature error of the sensor provides to control the precise air/fuel ratio of automobile engine and results in improvement of a fuel mileage and the less amount of toxic gases emitted by automobile.

  • PDF

A numerical study on the characteristics of a thermal mass air flow sensor with periodic heating pulses (주기 발열 파형을 이용한 열식 질량 유량계의 특성에 관한 수치적 연구)

  • Jeon, Hong-Kyu;Oh, Dong-Wook;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2482-2487
    • /
    • 2007
  • Numerical simulations are conducted for the analysis of a thermal mass air flow sensor with periodic heating pulses on silicon-nitride ($Si_3N_4$) thin membrane structure. This study aims to find the locations of temperature sensors on the thin membrane and the heating pulse conditions, that the higher sensitivity can be achieved, for the development of a MEMS fabricated mass air flow sensor which is driven in periodic heating pulse. The simulations, thus, focus on the membrane temperature profile according to variation of the flow velocity, heating duration time and imposed power. The flow velocity of the simulations is ranging from 3 m/s to 35 m/s, heating duration time from 1 ms to 3 ms and imposed power from 50 mW to 90 mW. The corresponding Reynolds numbers vary from 1000 to 10000.

  • PDF

The Effect on Wake Flow and Vortex Shedding Frequency by Vortex Stabilizer in Karman Vortex Type Air Flow Sensor (칼만와류식 공기유량센서의 와안정판이 후류유동장과 와유출주파수에 미치는 영향)

  • 임성원;류병남;이종춘;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.846-856
    • /
    • 2001
  • An experimental study has been made to investigate the effect on wake flow and vortex shedding frequency by vortex stabilizer in Karman vortex type air flow sensor. The conditions investigated include 3 types of shapes and 3 types of separation distances of the vortex stabilizer. The phase averaged technique and smoke-wire flow visualization method are used to understand the detail information. The rolling up position of shear layer is fixed by the influence of the vortex stabilizer. Especially, the convex type vortex stabilizer has shown the more stable repeatability and linearity regarding the vortex shedding frequency compared to the other types.

  • PDF

Experimental Study on a Micro Flow Sensor (미소 유량 센서에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1783-1788
    • /
    • 2004
  • In the present paper, a micro flow sensor, which can be used at bio-delivery systems and micro heat pumps, is developed. For this, the micro flow sensor is integrated on a quartz wafer ($SiO_2$) and is manufactured by simple and convenient microfabrication processes. The micro flow sensor aims for measuring mass flow rates in the low range of about $0{\sim}20$ SCCM. The micro flow sensor is composed of temperature sensors, a heater, and a flow microchannel. The temperature sensors and the heater are manufactured by the sputtering processes in this study. In the microfabrication processes, stainless steel masks with different patterns are used to deposit alumel and chromel for temperature sensors and nichrome for the heater on the quartz wafer. The microchannel is made of Polydimethylsiloxane(PDMS) easily. A deposited quartz wafer is bonded to the PDMS microchannel by using the air plasma. Finally, we confirmed the good operation of the present micro flow sensor by measuring flow rate.

  • PDF

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.

Flow Mechanism around Air Flow Sensor of Electronic Control Engine (전자제어 엔진의 공기유량센서 유동구조 연구)

  • 이종춘;황성만;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.486-493
    • /
    • 2000
  • Flow mechanism around air flow sensor of electronic control engine, especially Karman vortex type, was investigated experimentally. The two-dimensional flow characteristics in the intermediate wake region behind a triangular vortex-generator respectively apex forward facing, apex backward facing and vertical flat plates following after apex forward facing(i.e vortex-flowmeter) were investigated at Reynolods number of $ReH=1.4\times10^4$; H is the width of a triangular vortex-generator. The vortex shedding frequency for wide Reynolds number from $7\times10^3$ to $2.1\times10^4$ was also surveyed. The velocity component was measured by X-type hot wire anemometer at 8H downstream from the bluff body. The coherent structure of the intermediate wake behind a bluff body was obtained by conditional phase average technique. As a result, it was verified that the vertical flat plates following after apex forward triangular vortex-generator make not only more linear relation between free stream velocity and vortex shedding frequency but also more periodic vortex in the vicinity of the center of wake.

  • PDF

Improvement in flow and noise performances of small axial-flow fan for automotive fine dust sensor (차량용 미세먼지 센서용 소형 축류팬의 유동과 소음 성능 개선)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Inhiug Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • Recently, as interest in air quality in vehicles increases, the use of fine dust detection sensors for air quality measurement is becoming common. An axial-flow fan is inserted in the fine dust sensor installed in the air conditioning system in the vehicle to prevent dust from sinking directly on the sensor. When the sensor operates, the flow noise caused by the rotation of the axial-flow fan acts as a major noise source of the fine dust sensor. flow noise is recognized as one of the product competitiveness of fine dust sensors. In this study, the noise was gradually reduced at the same flow rate by improving the flow performance of the small axial flow fan. First, a virtual fan performance tester consisting of about 20 million grids was developed to analyze the aerodynamic performance of the target small axial-flow fan. In addition, the flow field was simulated by using compressible Large Eddy Simulation for direct computation of flow noise as well as high-accurate prediction of flow rate. The validity of numerical method are confirmed through the comparison of predicted results with experimental ones. After the effects of pitch angle on flow performance were analyzed using the verified numerical method, the pitch angle was determined to maximize the flow rate. It was found that the flow rate was increased by 8.1 % and noise was reduced by 0.8 dBA when the axial-flow fan with the optimum pitch angle was used.

Air-Water Two-Phase Flow Test Facility of a Single Stage Closed-type Centrifugal Pump (단단 밀폐형 원심펌프의 기액이상류 성능시험 설비)

  • Kim, S. Y.;Lee, S. L.;Kim, Y. T.;Kim, S. D.;Lee, Y. S.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.49-53
    • /
    • 2004
  • LabVIEW is mostly preferred to use in experiment, measurement and control as one of the useful thing in America and Europe. So, We tried performance experiment of a single-stage closed-type centrifugal pump by using the LabVIEW. The pump rpm and the shaft torque are measured by rpm sensor and torque sensor The test pump's maximum rpm, head, kW are 1,750, 13m, and 1.5kW, respectively The casing is made up with transparency acrylic for confirmation the flow patterns. We installed experimental equipment for air water two phase flow. This paper tries to analyze the single-phase flow characteristics through this air water two phase flow experimental apparatus. The performance results of a single-stage closed-type centrifugal pump satisfied reappearance and coincide well with head and coefficients according to the change of rpm.

  • PDF

Effects of Sensor Errors in Air Cleaner Testing on the Cleaner Performance Estimation (공기청정기 시험기의 센서신호 오차가 공기청정기 성능 평가에 미치는 영향)

  • CHUNHWAN LEE;MINYOUNG KIM;SUMIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2023
  • The fuel cell in fuel cell electric vehicle utilizes oxygen in the atmosphere, which requires the use of an air cleaner system to minimize the intake of harmful pollutants. To estimate the performance of the air cleaner system, the pressure drop between the filter inlet and outlet is used under the rated air flow condition. In this study, the effect of sensor error in this air cleaner testing is experimentally carried out. It is found that the errors of the temperature sensor does not significantly affect the estimation of pressure drop. However, in the case of the pressure sensor, 5% sensor error results in the error of pressure drop estimation by 3%. Therefore, it is recommended that the measurement accuracy of the pressure sensor mounted in test system should be maintained at less than 5%.