• Title/Summary/Keyword: Ai doped ZnO

Search Result 14, Processing Time 0.026 seconds

A Study on Characteristics of ZnO/n-Si Low Cost Solar Cells (ZnO/n-Si 저가 박막태양전지의 특성연구)

  • Baik, D.G.;Cho, S.M.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • ZnO/n-Si junctions were fabricated by spin coating with ZnO precursor produced by the sol-gel process. In order to increase the electrical conductivity of ZnO films, the films were n-doped with Al impurity and subsequently annealed at about $450^{\circ}C$ under reducing environments. The ohmic contacts between n-Si and AI for a bottom electrode were successfully fabricated by doping the rear surface of Si substrate with phosphorous atoms. The front surface of the substrate was also doped with phosphorous atoms for improving the efficiency of the solar cells. Consequently, conversion efficiencies ranging up to about 5.3% were obtained. These efficiencies were found to decrease slowly with time because of the oxide films formed at the ZnO/Si interface upon oxygen penetration through the porous ZnO. Oxygen barrier layers could be necessary in order to prevent the reduction of conversion efficiencies.

  • PDF

Structure, Optical and Electrical Properties of AI-doped ZnO Thin Film Grown in Hydrogen-Incorporated Sputtering Gas

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Munir, Badrul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • Low RF power density was used for preparing transparent conducting AI-doped ZnO (AZO) thin films by RF Magnetron Sputtering on Corning 1737 glass. The dependence of films' structural, optical and electrical properties on sputtering gas, film's thickness and substrate temperature were investigated. Low percent of incorporated H2 in Ar sputtering gas has proven to reduce film's resistivity and sheet resistance as low as $4.1\times10^{-3}{\Omega}.cm$. It also formed new preferred peaks orientation of (101) and (100) which indicated that the c-axis of AZO films was parallel to the substrate. From UN-VIS-NIR Spectrophotometer analysis, it further showed high optical transmittance at about $\~ 90\%$ at visible light spectra (400-700nm).

  • PDF

Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링에 의해 증착한 AZO 박막의 특성)

  • Park, Yi-Seop;Lee, Seung-Ho;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.

Effects of Different Dopants(B, AI, Ga, In) on the Properties of Transparent conducting ZnO Thin Films (B, Al, Ga, In의 도핑물질이 투명 전도성 ZnO 박막의 특성에 미치는 영향)

  • No, Young-Woo;Cho, Jong-Rae;Son, Se-Mo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.242-248
    • /
    • 2008
  • The structural, optical and electrical properties of ZnO films doped with 1.5 at% of 3A materials(B, Al, Ga, In) were studied by sol-gel process. The films were found to be c-axis (002) oriented hexagonal structure on glass substrate, when post heated at 500 $^{\circ}C$. The surface of the films showed a uniform and nano size microstructure and the crystalline size of doped films decreased. The lattice constants of ZnO:B/Al/Ga increased than that of ZnO, while ZnO:In decreased. All the films were highly transparent(above 90 %) in the visible region. The energy gaps of ZnO:B/Al/Ga were increased a little, but that of ZnO:In was not changed. The resistivities of ZnO:Al/Ga/In were less than 0.1 $\Omega$cm. All the films showed a semiconductor properties in the light or temperature, however ZnO:In was less sensitive to it. A figure of merit of ZnO:In had the highest value of 0.025 $\Omega^{-1}$ in all samples.

Effects of the substrate temperature on the properties of Al doped ZnO films (Al doped ZnO 박막 특성에 미치는 증착 온도의 영향)

  • Kim, Yong-Hyun;Seong, Tae-Yeon;Kim, Won-Mok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.82-83
    • /
    • 2008
  • AI doped ZnO (AZO) films, and intentionally Zn added AZO (ZAZO) films were prepared on Corning glass by rf magnetron sputtering, and the electrical, optical, and structural properties of the as-deposited films together with the air annealed films were investigated. The resistivity of the AZO films increased with increasing substrate temperature and having minimum resistivity at $150^{\circ}C$. At the high temperature, the ZAZO films showed improved electrical properties better than the AZO films due.to increase in both the carrier concentration and.the Hall mobility. Upon air annealing at $500^{\circ}C$, the resistivity of both AZO and ZAZO films increased substantially, but the relative amount of degradation was smaller for films deposited at $450^{\circ}C$ than the films deposited at $150^{\circ}C$.

  • PDF

Characteristics of Al-doped ZnO thin films prepared by sol-gel method (졸-겔법으로 제조한 Al-doped ZnO 박막의 특성에 관한 연구)

  • Kim, Yong-Nam;Lee, Seoung-Soo;Song, Jun-Kwang;Noh, Tai-Min;Kim, Jung-Woo;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • AI-doped ZnO(AZO) thin films have been fabricated on glass substrate by sol-gel method, and the effect of Al precursors and post-annealing temperature on the characteristics of AZO thin films was investigated. The sol was prepared with zinc acetate, EtOH, MEA and Al precursors. In order to dope Al in ZnO, two types of aluminum nitrate and aluminum chloride were used as Al precursor. Zinc concentration was 0.5 mol/l and the content of Al precursor was 1 at% of Zn in the sol. The sol was spin-coated on glass substrate, and the coated films were annealed at 550ue for 2 hand were post-annealed at temperature ranges of $300{\sim}500^{\circ}C$ for 2 h in reducing atmosphere ($N_2/H_2$= 9/1). Structural, electrical and optical propertis of the fabricated AZO thin films were analyzed by XRD, FE-SEM, AFM, hall effect measurement system and UV-visible spectroscopy. Optical and electrical properties of AZO thin films prepared with aluminum nitrate as Al precursor were better than those of films prepared with aluminum chloride. The electrical resistivity and the optical transmittance of films decreased with increasing post-annealing temperatures. The minimum electrical resistivity of $2{\times}10^{-3}$ and the maximum optical transmittance of 91% were obtained for the AZO thin films post-annealed at $550^{\circ}C\;and\;300^{\circ}C$, respectively.

Structural, Optical and Electrical Properties of AI Doped ZnO Thin Films Prepared by Nd:YAG-PLD Technology (Nd:YAG-PLD법에 의해 제작된 ZnO:AI 박막의 구조적, 광학적, 전기적 특성)

  • No, Im-Jun;Lim, Jae-Sung;Lee, Cheon;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1596-1601
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) thin films were deposited on coming glass substrates using an Nd:YAG pulsed laser deposition technology. The AZO thin films were deposited with various growth conditions such as the substrate temperature and oxygen partial pressure. In this work, we used various measurement technologies in order to investigate the electrical, structural, and optical properties of the AZO thin films. Among the AZO thin films, the one prepared at the substrate temperature of $300^{\circ}C$ and oxygen partial pressure of 5 mTorr showed the best properties of an electrical resistivity of $4.63{\times}10^{-4}{\Omega}{\cdot}cm$, a carrier concentration of $9.25{\times}10^{20}cm^{-3}$, and a carrier mobility of $31.33cm^2/V{\cdot}s$. All the AZO thin films showed an high average optical transmittance over 90 % in visible region.

The Characteristic on Electrical Resistivity of Zno film by Ramped method (선택적 증착에 의해서 제작한 ZnO 박막의 전기저항률 특성)

  • Lee, Woo-Sun;Choi, Kwon-Woo;Cho, Joon-Ho;Park, Jin-Seong;Seo, Yong-Jin;Kim, Sang-Yong;Chung, Yong-Ho;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.26-29
    • /
    • 2001
  • ZnO thin film had been deposited on the glass by Evaporation Ramped method. and electrical and resistivity were investigated. Evaporation gas($O_{2}$,) pressure was 10mTorr~100mTorr, chamber pressure was $2{\times}10^{-5}$, and then ZnO film were deposited. AI-doped ZnO thin film had the lowest resistivity ($1{\times}10^{4}\;{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were$6.27{\times}10^{20}\;cm^{3}$ and $22.04 cm^{2}/V{\cdot}s$, respectively. When ZnO film had been deposited by Ramp6ed method compared with normal method and investigated resistivity.

  • PDF