• Title/Summary/Keyword: Aggregation Function

Search Result 212, Processing Time 0.027 seconds

Study on the Closure Time in Healthy Small-Breed Dogs by Platelet Function Analyzer-200

  • Kyoungyoun Lee;Yoonhee Kim;Ulsoo Choi
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.330-335
    • /
    • 2023
  • Platelet function evaluation by PFA-100 or -200 has been known to be objective and sensitive for assessing platelet function and dysfunction of Von Willebrand Factor in humans and dogs. However, using the C/EPI cartridge in dogs is controversial. This study aimed to establish a reference range for PFA closure time in healthy small breed dogs (body weight < 10 kg) and to evaluate the effectiveness of both C/ADP and C/EPI cartridges for these dogs. Citrated blood samples were collected from 50 clinically healthy small breed dogs that were admitted for presurgical procedures or health checkups, and closure times were measured using the PFA-200. Reference ranges were determined as 42-144 s (median 67 s, mean 71.2 s, SD ± 21.2 s, 95% RI 43-140 s) , for CT-C/ADP and 41-200 s (median 87, mean 91.2 s, SD ± 31.8 s, 95% RI 44-195 s) for CT-C/EPI. The present study demonstrated that the reference ranges for PFA closure times in small breed dogs are in line with existing reference ranges. The utilization of C/ADP cartridges is the preferred choice for evaluating platelet function in small breed dogs. However, due to variable responses of epinephrine to platelet aggregation in dogs, caution should be exercised when using C/EPI cartridges.

A Horizontal Partition of the Object-Oriented Database for Efficient Clustering

  • Chung, Chin-Wan;Kim, Chang-Ryong;Lee, Ju-Hong
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.164-172
    • /
    • 1996
  • The partitioning of related objects should be performed before clustering for an efficient access in object-oriented databases. In this paper, a horizontal partition of related objects in object-oriented databases is presented. All subclass nodes in a class inheritance hierarchy of a schema graph are shrunk to a class node in the graph that is called condensed schema graph because the aggregation hierarchy has more influence on the partition than the class inheritance hierarchy. A set function and an accessibility function are defined to find a maximal subset of related objects among the set of objects in a class. A set function maps a subset of the domain class objects to a subset of the range class objects. An accessibility function maps a subset of the objects of a class into a subset of the objects of the same class through a composition of set functions. The algorithm derived in this paper is to find the related objects of a condensed schema graph using accessibility functions and set functions. The existence of a maximal subset of the related objects in a class is proved to show the validity of the partition algorithm using the accessibility function.

  • PDF

Turbidity Profile of Maleylated Glycinin

  • Kim, Kang-Sung;Kim, Myung-Hee;Kim Se-Ran;Kwon, Dae-Young
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.4
    • /
    • pp.314-319
    • /
    • 2004
  • Glycinin of more than $97\%$ purity was modified using maleic anhydride. Glycinin samples of $0\%,\;65\%,\;and\;95\%$ lysine residue modifications were used to determine the changes in turbidimetric characteristics of the protein due to maleylation. The solubility behavior of the protein as a function of pH was changed with maleylation. The isoelectric point of $65\%\;and\;95\%$ modified glycinin shifted to pH 4.0 and pH 3.5-4.0, respectively, as compared to pH 4.6 for native glycinin. Maleylated glycinins exhibited increased solubility at pH above 4.6. Turbidity of native glycinin decreased substantially by the addition of NaCl, but the stabilizing effect of NaCl decreased when the protein was chemically modified. The effect of NaCl on $65\%$ modified glycinin was intermediate between native glycinin and $95\%$ modified sample. Thermal aggregation of native glycinin was completed within 5 min of heating at $80^{\circ}C$. Maleylation contributed significantly to the thermostability of the protein at pH of 7.0 and 9.0, exhibiting little turbidity. Addition of NaCl suppressed thermal aggregation of native glycinin, but turbidity actually increased for the samples of $65\%\;and\;95\%$ modification.

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function

  • Lee, Song-Mi;Kim, Ji-Sun;Yun, Chul-Ho;Chae, Ho-Zoon;Kim, Kang-Hwa
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.812-816
    • /
    • 2009
  • To screen chaperone proteins from Schizosaccharomyce pombe (S. pombe), we prepared recombinant citrate synthase of the fission yeast as a substrate of anti-aggregation assay. Purified recombinant citrate synthase showed citrate synthase activity and was suitable for the substrate of chaperone assay. Several heat stable proteins including aspartyl aminopeptidase (AAP) for candidates of chaperone were screened from the supernatant fraction of heat-treated crude extract of S. pombe. The purified AAP migrated as a single band of 47 kDa on SDS-polyacrylamide gel electrophoresis. The native size of AAP was estimated as 200 kDa by a HPLC gel permeation chromatography. This enzyme can remove the aspartyl residue at N-terminus of angiotensin I. In addition, AAP showed the heat stability and protected the aggregation of citrate synthase caused by thermal denaturation. This study showed that S. pombe AAP is a moonlight protein that has aspartyl aminopeptidase and chaperone activities.

IMPLEMENTATION OF GIS BASED WATER QUALITY INDICES FOR WATER QUALITY MANAGEMENT

  • Song, Ta-O;Kim, Kye-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.612-615
    • /
    • 2007
  • Water quality modelling is an ideal tool of simulating physical, chemical and biological changes occurring in water systems. It has been utilized in a number of GIS-based water quality management and analysis applications. However, there is a need of a decision making process to translate the modelling result into an understandable form thereby implement the modelling results to the real world. This paper outlines a new water quality index called the QUAL2E's water quality index (QWQI) based on the water quality modelling using QUAL2E. The development mainly includes four steps: variable selection, sub-index development, weight assignment and sub-index aggregation. An experiment of applying the index and GIS to the Sapgyo River in Korea was implemented. Different from other water quality indices for general water uses, the index is specifically used for the simulated water quality indicators. The index can provide a simple and easy-to-understand decision support. Furthermore, interfacing with GIS, the decision analysis can be performed within a spatial environment. However, more study needs to be made in the future including the improvement of aggregation function.

  • PDF

Analysis of Physiological Responses and Use of Fuzzy Information Granulation-Based Neural Network for Recognition of Three Emotions

  • Park, Byoung-Jun;Jang, Eun-Hye;Kim, Kyong-Ho;Kim, Sang-Hyeob
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1231-1241
    • /
    • 2015
  • In this study, we investigate the relationship between emotions and the physiological responses, with emotion recognition, using the proposed fuzzy information granulation-based neural network (FIGNN) for boredom, pain, and surprise emotions. For an analysis of the physiological responses, three emotions are induced through emotional stimuli, and the physiological signals are obtained from the evoked emotions. To recognize the emotions, we design an FIGNN recognizer and deal with the feature selection through an analysis of the physiological signals. The proposed method is accomplished in premise, consequence, and aggregation design phases. The premise phase takes information granulation using fuzzy c-means clustering, the consequence phase adopts a polynomial function, and the aggregation phase resorts to a general fuzzy inference. Experiments show that a suitable methodology and a substantial reduction of the feature space can be accomplished, and that the proposed FIGNN has a high recognition accuracy for the three emotions using physiological signals.

Water soluble tomato concentrate regulates platelet function via the mitogen-activated protein kinase pathway

  • Jeong, Dahye;Irfan, Muhammad;Saba, Evelyn;Kim, Sung-Dae;Kim, Seung-Hyung;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Tomato extract has been shown to exert antiplatelet activity in vitro and to change platelet function ex vivo, but with limitations. In this study, antiplatelet activity of water soluble tomato concentrate (Fruitflow I) and dry water soluble tomato concentrate (Fruitflow II) was investigated using rat platelets. Aggregation was induced by collagen and adenosine diphosphate and granule-secretion, $[Ca^{2+}]_i$, thromboxane B2, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels were examined. The activation of integrin ${\alpha}_{IIb}{\beta}_3$ and phosphorylation of signaling molecules, including mitogen-activated protein kinase (MAPK) and PI3K/Akt, were investigated by flow cytometry and immunoblotting, respectively. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were examined. Moreover, in vivo thrombus weight was tested by an arteriovenous shunt model. Fruitflow I and Fruitflow II significantly inhibited agonist induced platelet aggregation, adenosine triphosphate and serotonin release, $[Ca^{2+}]_i$, and thromboxane B2 concentration, while having no effect on cAMP and cGMP levels. Integrin ${\alpha}_{IIb}{\beta}_3$ activation was also significantly decreased. Moreover, both concentrates reduced phosphorylation of MAPK pathway factors such as ERK, JNK, P38, and PI3K/Akt. In vivo thrombus formation was also inhibited. Taken together, these concentrates have the potential for ethnomedicinal applications to prevent cardiovascular ailments and can be used as functional foods.

Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms

  • Kim, Jaekwang;Yoon, Hyejin;Basak, Jacob;Kim, Jungsu
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.767-776
    • /
    • 2014
  • Alzheimer's disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-${\alpha}$ ($A{\alpha}$) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ${\varepsilon}4$ allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates $A{\alpha}$ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on $A{\alpha}$ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.

Effect of Reaction Conditions on the Particle Properties for Synthesis of Stabilized Zirconia by Modified Oxalate Method

  • Park, Hyun-wook;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Hae Jin;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.529-534
    • /
    • 2016
  • Nanocrystalline powder of zirconia stabilized with 8 mol% yttria (YSZ) has been synthesized through oxalate process using $ZrOCl_2{\cdot}8H_2O$ and $Y(NO_3)_3{\cdot}6H_2O$ as starting materials. Understanding of the characteristic changes of YSZ powder as a function of processing conditions is crucial in developing dense and porous microstructures required for fuel cell applications. In this research, microstructure change, surface area, particle shape and particle size were measured as a function of different processing conditions such as calcination temperature, stirring speed and concentration of starting materials. The resultant crystallite sizes were calculated by XRD-LB (X-Ray Diffraction Line-Broadening) method, BET method, and morphology of the crystal was observed in TEM and FE-SEM. The TEM examination showed that the powder synthesized with 0.7 M of YSZ concentration had a spherical morphology with sizes ranging from 20 to 40 nm. However, the powder was gradually aggregated above 1.0 M of YSZ concentration with the aggregation being intensified as the YSZ concentration was increased.