DOI QR코드

DOI QR Code

Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function

  • Lee, Song-Mi (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Ji-Sun (Department of Food and Nutrition, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University) ;
  • Chae, Ho-Zoon (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim, Kang-Hwa (Department of Food and Nutrition, Chonnam National University)
  • Published : 2009.12.31

Abstract

To screen chaperone proteins from Schizosaccharomyce pombe (S. pombe), we prepared recombinant citrate synthase of the fission yeast as a substrate of anti-aggregation assay. Purified recombinant citrate synthase showed citrate synthase activity and was suitable for the substrate of chaperone assay. Several heat stable proteins including aspartyl aminopeptidase (AAP) for candidates of chaperone were screened from the supernatant fraction of heat-treated crude extract of S. pombe. The purified AAP migrated as a single band of 47 kDa on SDS-polyacrylamide gel electrophoresis. The native size of AAP was estimated as 200 kDa by a HPLC gel permeation chromatography. This enzyme can remove the aspartyl residue at N-terminus of angiotensin I. In addition, AAP showed the heat stability and protected the aggregation of citrate synthase caused by thermal denaturation. This study showed that S. pombe AAP is a moonlight protein that has aspartyl aminopeptidase and chaperone activities.

Keywords

References

  1. Gething, M. J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33-45
  2. Hendrick, J. P. and Hartl, F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-384 https://doi.org/10.1146/annurev.bi.62.070193.002025
  3. Kim, K. K., Yokota, H., Santoso, S., Lerner, D., Kim, R. and Kim, S. H. (1998) Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein Homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct Biol. 121, 76-80 https://doi.org/10.1006/jsbi.1998.3969
  4. Klemenz, R., Andres, A. C., Fröhli, E., Schäfer, R. and Aoyama, A. (1993) Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J. Cell Biol. 120, 639-645 https://doi.org/10.1083/jcb.120.3.639
  5. Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A. 89, 10449-10453 https://doi.org/10.1073/pnas.89.21.10449
  6. Kim, R., Kim, K. K., Yokota, H. and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. U.S.A. 95, 9129-9133 https://doi.org/10.1073/pnas.95.16.9129
  7. Soto, A., Allona, I., Collada, C., Guevara, M. A., Casado, R., Rodriguez-Cerezo, E., Aragoncillo, C. and Gomez, L. (1999) Heterologous expression of a plant small heatshock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120, 521-528 https://doi.org/10.1104/pp.120.2.521
  8. Berndt, C., Lillig, C. H. and Holmgren, A. (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta. 1783, 641-650 https://doi.org/10.1016/j.bbamcr.2008.02.003
  9. Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., Lee, J. R., Lee, S. S., Moon, J. C., Yun, J. W., Choi, Y. O., Kim, W. Y., Kang, J. S., Cheong, G. W., Yun, D. J., Rhee, S. G., Cho, M. J. and Lee, S. Y. (2004) Twoenzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635 https://doi.org/10.1016/j.cell.2004.05.002
  10. Noguchi, S., Komiya, T., Eguchi, H., Shirahata, A., Nikawa, J. and Kawamura, M. (2007) Methionine aminopeptidase II: a molecular chaperone for sarcoplasmic reticulum calcium ATPase. J. Membr. Biol. 215, 105-110 https://doi.org/10.1007/s00232-007-9010-7
  11. Malki, A., Caldas, T., Abdallah, J., Kern, R., Eckey, V., Kim, S. J., Cha, S. S., Mori, H. and Richarme, G. (2004) Peptidase activity of the Escherichia coli Hsp31 chaperone. J. Biol. Chem. 280, 14420-14426 https://doi.org/10.1074/jbc.M408296200
  12. Rozenfeld, R., Muller, L., El Messari, S. and Llorens-Cortes, C. (2004) The C-terminal domain of aminopeptidase A is an intramolecular chaperone required for the correct folding, cell surface expression, and activity of this monozinc aminopeptidase. J. Biol. Chem. 279, 43285-43295 https://doi.org/10.1074/jbc.M404369200
  13. Guerin, R., Arseneault, G., Dumont, S. and Rokeach, L. A. (2008) Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol. Biol. Cell. 19, 4404-4420 https://doi.org/10.1091/mbc.E08-02-0188
  14. Alaamery, M. A. and Hoffman, C. S. (2008) Schizosaccharomyces pombe Hsp90/Git10 is required for glucose/cAMP signaling. Genetics 178, 1927-1936 https://doi.org/10.1534/genetics.107.086165
  15. Liang, J. and Fantes, P. (2007) The Schizosaccharomyces pombe Cdc7 protein kinase required for septum formation is a client protein of Cdc37. Eukaryot Cell. 6, 1089-1096 https://doi.org/10.1128/EC.00080-07
  16. Zimmerman, S., Tran, P. T., Daga, R. R., Niwa, O. and Chang, F. (2004) Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev. Cell. 6, 497-509 https://doi.org/10.1016/S1534-5807(04)00096-6
  17. Yamaki, M., Umehara, T., Chimura, T. and Horikoshi, M. (2001). Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6, 1043-1054 https://doi.org/10.1046/j.1365-2443.2001.00487.x
  18. Grallert, H., Rutkat, K. and Buchner, J. (1998) GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J. Biol. Chem. 273, 33305-33310 https://doi.org/10.1074/jbc.273.50.33305
  19. Kwon, S., Jung, Y. and Lim, D. (2008) Proteomic analysis of heat-stable proteins in Escherichia coli. BMB Rep. 41, 108-111 https://doi.org/10.5483/BMBRep.2008.41.2.108
  20. Yokoyama, R., Kawasaki, H. and Hirano, H. (2001) Measurement of aspartyl aminopeptidase activity by Matrix-assisted Laser Desorption/ionization time-of-flight mass spectrometry. Anal Sci. 17, 1551-1553
  21. Kim, K. K., Kim, R. and Kim, S. H. (1998) Crystal structure of a small heat-shock protein. Nature 394, 595-599 https://doi.org/10.1038/29106
  22. Manna, T., Sarkar, T., Poddar, A., Roychowdhury, M., Das, K. P. and Bhattacharyya, B. (2001) Chaperone-like activity of tubulin. binding and reactivation of unfolded substrate enzymes. J. Biol. Chem. 276, 39742-39747 https://doi.org/10.1074/jbc.M104061200
  23. Haley, D. A., Horwitz, J. and Stewart, P. L. (1998) The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27-35 https://doi.org/10.1006/jmbi.1997.1611
  24. Yokoyama, R., Kawasaki, H. and Hirano, H. (2006) Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J. 273, 192-198 https://doi.org/10.1111/j.1742-4658.2005.05057.x
  25. Srere P. A. (1969) Citrate synthase. Methods in Enzymology 13, 3-11 https://doi.org/10.1016/0076-6879(69)13005-0

Cited by

  1. Screening Molecular Chaperones Similar to Small Heat Shock Proteins inSchizosaccharomyces pombe vol.43, pp.3, 2015, https://doi.org/10.5941/MYCO.2015.43.3.272
  2. Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage vol.287, pp.22, 2012, https://doi.org/10.1074/jbc.M111.309500