References
- Gething, M. J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33-45
- Hendrick, J. P. and Hartl, F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-384 https://doi.org/10.1146/annurev.bi.62.070193.002025
- Kim, K. K., Yokota, H., Santoso, S., Lerner, D., Kim, R. and Kim, S. H. (1998) Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein Homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct Biol. 121, 76-80 https://doi.org/10.1006/jsbi.1998.3969
- Klemenz, R., Andres, A. C., Fröhli, E., Schäfer, R. and Aoyama, A. (1993) Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J. Cell Biol. 120, 639-645 https://doi.org/10.1083/jcb.120.3.639
- Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A. 89, 10449-10453 https://doi.org/10.1073/pnas.89.21.10449
- Kim, R., Kim, K. K., Yokota, H. and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. U.S.A. 95, 9129-9133 https://doi.org/10.1073/pnas.95.16.9129
- Soto, A., Allona, I., Collada, C., Guevara, M. A., Casado, R., Rodriguez-Cerezo, E., Aragoncillo, C. and Gomez, L. (1999) Heterologous expression of a plant small heatshock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120, 521-528 https://doi.org/10.1104/pp.120.2.521
- Berndt, C., Lillig, C. H. and Holmgren, A. (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta. 1783, 641-650 https://doi.org/10.1016/j.bbamcr.2008.02.003
- Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., Lee, J. R., Lee, S. S., Moon, J. C., Yun, J. W., Choi, Y. O., Kim, W. Y., Kang, J. S., Cheong, G. W., Yun, D. J., Rhee, S. G., Cho, M. J. and Lee, S. Y. (2004) Twoenzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635 https://doi.org/10.1016/j.cell.2004.05.002
- Noguchi, S., Komiya, T., Eguchi, H., Shirahata, A., Nikawa, J. and Kawamura, M. (2007) Methionine aminopeptidase II: a molecular chaperone for sarcoplasmic reticulum calcium ATPase. J. Membr. Biol. 215, 105-110 https://doi.org/10.1007/s00232-007-9010-7
- Malki, A., Caldas, T., Abdallah, J., Kern, R., Eckey, V., Kim, S. J., Cha, S. S., Mori, H. and Richarme, G. (2004) Peptidase activity of the Escherichia coli Hsp31 chaperone. J. Biol. Chem. 280, 14420-14426 https://doi.org/10.1074/jbc.M408296200
- Rozenfeld, R., Muller, L., El Messari, S. and Llorens-Cortes, C. (2004) The C-terminal domain of aminopeptidase A is an intramolecular chaperone required for the correct folding, cell surface expression, and activity of this monozinc aminopeptidase. J. Biol. Chem. 279, 43285-43295 https://doi.org/10.1074/jbc.M404369200
- Guerin, R., Arseneault, G., Dumont, S. and Rokeach, L. A. (2008) Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol. Biol. Cell. 19, 4404-4420 https://doi.org/10.1091/mbc.E08-02-0188
- Alaamery, M. A. and Hoffman, C. S. (2008) Schizosaccharomyces pombe Hsp90/Git10 is required for glucose/cAMP signaling. Genetics 178, 1927-1936 https://doi.org/10.1534/genetics.107.086165
- Liang, J. and Fantes, P. (2007) The Schizosaccharomyces pombe Cdc7 protein kinase required for septum formation is a client protein of Cdc37. Eukaryot Cell. 6, 1089-1096 https://doi.org/10.1128/EC.00080-07
- Zimmerman, S., Tran, P. T., Daga, R. R., Niwa, O. and Chang, F. (2004) Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev. Cell. 6, 497-509 https://doi.org/10.1016/S1534-5807(04)00096-6
- Yamaki, M., Umehara, T., Chimura, T. and Horikoshi, M. (2001). Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6, 1043-1054 https://doi.org/10.1046/j.1365-2443.2001.00487.x
- Grallert, H., Rutkat, K. and Buchner, J. (1998) GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J. Biol. Chem. 273, 33305-33310 https://doi.org/10.1074/jbc.273.50.33305
- Kwon, S., Jung, Y. and Lim, D. (2008) Proteomic analysis of heat-stable proteins in Escherichia coli. BMB Rep. 41, 108-111 https://doi.org/10.5483/BMBRep.2008.41.2.108
- Yokoyama, R., Kawasaki, H. and Hirano, H. (2001) Measurement of aspartyl aminopeptidase activity by Matrix-assisted Laser Desorption/ionization time-of-flight mass spectrometry. Anal Sci. 17, 1551-1553
- Kim, K. K., Kim, R. and Kim, S. H. (1998) Crystal structure of a small heat-shock protein. Nature 394, 595-599 https://doi.org/10.1038/29106
- Manna, T., Sarkar, T., Poddar, A., Roychowdhury, M., Das, K. P. and Bhattacharyya, B. (2001) Chaperone-like activity of tubulin. binding and reactivation of unfolded substrate enzymes. J. Biol. Chem. 276, 39742-39747 https://doi.org/10.1074/jbc.M104061200
- Haley, D. A., Horwitz, J. and Stewart, P. L. (1998) The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27-35 https://doi.org/10.1006/jmbi.1997.1611
- Yokoyama, R., Kawasaki, H. and Hirano, H. (2006) Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J. 273, 192-198 https://doi.org/10.1111/j.1742-4658.2005.05057.x
- Srere P. A. (1969) Citrate synthase. Methods in Enzymology 13, 3-11 https://doi.org/10.1016/0076-6879(69)13005-0
Cited by
- Screening Molecular Chaperones Similar to Small Heat Shock Proteins inSchizosaccharomyces pombe vol.43, pp.3, 2015, https://doi.org/10.5941/MYCO.2015.43.3.272
- Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage vol.287, pp.22, 2012, https://doi.org/10.1074/jbc.M111.309500