164 l JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996.

A Horizontal Partition of the Object-Oriented
Database for Efficient Clustering

Chin-Wan Chung, Chang-Ryong Kim, and Ju-Hong Lee

Abstract

The partitioning of related objects should be performed before clustering for an efficient access in object-oriented databases.
In this paper, a horizontal partition of related objects in object-oriented databases is presented.

All subclass nodes in a class inheritance hierarchy of a schema graph are shrunk to a class node in the graph that is called
condensed schema graph because the aggregation hierarchy has more influence on the partition than the class inheritance
hierarchy. A set function and an accessibility function are defined to find a maximal subset of related objects among the set
of objects in a class. A set function maps a subset of the domain class objects to a subset of the range class objects. An
accessibility function maps a subset of the objects of a class into a subset of the objects of the same class through a composition

of set functions.

The algorithm derived in this paper is to find the related objects of a condensed schema graph using accessibility functions
and set functions. The existence of a maximal subset of the related objects in a class is proved to show the validity of the

partition algorithm using the accessibility function.

I. Introduction

During the last few years, object-oriented databases

(OODBs) gained a considerable attention mainly because
they reduce the semantic gap between real world concepts
and data representation models. A major drawback of
OODBs is the low speed of query execution, due to the
sequential processing of independent entitics.

In databases, the clustering of data is needed to store
and retrieve local data efficiently. Generally, the clustering
of data can be divided into two phases. The first phase is
the partitioning of related data. The second phase is to
rearrange data in the partition block so that data which
are more likely accessed together are located closely to
increase the performance.

There are several issues on the clustering of
object-oriented databases such as the object arrangement in
a cluster, the effect of an object access model upon a
cluster, the dynamic reclustering, a simulation model for
performance measurement, a physical data store model for
a cluster, and access frequency measurement model.

Manuscript received July. 29,-1995; accepted November 8, 1995,
The authors are with Department of Information and Communication
Engineering, Korea Advanced Institute of Science and Technology.

Several papers published on the clustering of the
object-oriented databases discussed these issues [1, 3, 4,
12]. However, they assumed that there were already the
partition. blocks of related objects. For example, in
ORION system[8], instances of the same class are
clustered in the same physical segment. Furthermore,
instances which belong to user-specified collection of
classes are stored in the same physical segment.
Consequently, it is important to derive a partition block
prior to clustering.

The information for partitioning databases can be given
by users. However, the information from users is not
always correct and sufficient. Therefore, an automatic
partition of databases is desirable. In this paper, we
present a method to find the partition whose block in-
cludes objects related by the aggregation hierarchy[2](same
as the part-of relationship or the class composition hierarchy).

The data model has an effect upon the partition of
data. We discuss the partition. method for each data
model. After that, we derive a partition method for the
object-oriented data model. ’

The relational database can be partitioned more freely
compared with other types of databases because it does
not have physical connections between data. The data of
the relational database are related by value itself. There
are two general methods of partitioning in the relational

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 165

data model, the horizontal method and the vertical
method. The horizontal method partitions a relation along
its tuples. The vertical method partitions the attributes of
the relation [10, 11, 13].

In the network model and the hierarchical model, there
are also two methods of partitioning, the horizontal
method and the vertical method. The vertical partition
method chooses all record occurrences in each record type
as a unit of partition. This is analogous to "taking a
relation as a unit in the relational model. Given a data
structure diagram, such partition is equivalent to the
isolation of record types by cutting access paths vertically
with respect to the plane of the diagram. The horizontal
partition method takes all the occurrences connected to
each other through access paths between different record
types as a unit of partition. Therefore, in this method,
databases are partitioned in parallel to the plane of the
schema diagram, which can be considered as a horizontal
plane. One important feature of this approach is that each
partition preserves a complete schema structure [9]. In
addition, since the horizontal partition groups occurrences
connected through the access path, the related occurrences
will be retrieved and cached together in the buffer.
Therefore, the navigation among related occurrences will
be efficient. ' _

There are a few different partition methods in
object-oriented databases [7]. One of the methods is to
group objects that are connected (referenced) by OID’s in
the aggregation hierarchy. This method can be valid
because the aggregation hierarchy is equivalent to the
relationship through which tables are joined in relational
databases. Another method is to group all objects in the
class inheritance hierarchy. In object-oriented databases,
the schema graph is used to describe the data structure.
The query graph for a user query is a subset of a schema
graph. The user query selects all objects that satisfy the
Boolean predicates on a query graph. The selection criteria
contains aggregation hierarchies. The objects in an
aggregation hierarchy are accessed together. The
inheritance hierarchy is not the relationship in which data
are accessed together but the conceptual relationship
between a superclass and a subclass. Therefore, the
inheritance hierarchy has less effect upon the partition
than the aggregation hierarchy.

In this paper, we present a method to partition a set of
objects into subsets that have objects connected by the
object identifier through an aggregation hierarchy, when all
the objects in a class inheritance hierarchy are initially
stored in - one partition block. This type of partition is
similar to the horizontal partition of network or
hierarchical databases. The proposed partition algorithm
offers an automatic partition for object-oriented databases
that results in an effective clustering of related objects.

We define a condensed schema graph as the one in
which all the classes on a class inheritance hierarchy are
condensed into one node, as illustrated in Figure 1.

Schema graph .

Class inheritance hierarchy
———3> Aggregation hierarchy

Condensed schema graph

c5 cb

cl

Fig. 1. Condensed schema graph.

Therefore, a condensed schema graph does not have
inheritance hierarchies. The. graph has aggregation
hierarchies only. The objects in a schema graph are
connected by OID’s through aggregation hierarchies. The
OID pointing direction is not important for the partition
purpose because the backward reference can always be
implemented. Consequently, a condensed schema graph is
an undirected graph.

In section II, the set function model is explained. In
section III, the algorithm that partitions object-oriented
databases is described.

II. Set Function Model

1. Set ﬁmcﬁon

In this section, we define a set function, an accessibility

166 CHUNG ET AL : A HORIZONTAL PARTITION OF THE OBJECT-ORIENTED DATABASE FOh EFFICIENT CLUSTERING

function and an accessibility relation. We have chosen a
set function for the fdllowing reasons: (1) An inverse is
always defined for the set function.-(2) An accessibility
relation is usually required between sets of objects. (3) A
set function can easily be implemented in terms of data
manipulation operations. We introduce the concept of the
set function and then develop its properties necessary here.

A set function is induced from a function. Let f: X ~—
Y, then f induces a set function F:2%2" and its inverse
F':2" — 2¥ such that F(D)={yEYXEDAy = fix)},
F'(R) = /xEX | i ER), VD € 2¥, VREZY, where
2% denotes the power set of X.

In network databases and hierarchical databases we can
define a function from a set of member records to a set
of owner records because there is a one-to-many

" relationship between owner records and member records.
However, in object-oriented databases, we cannot. define a
function between two classes in an aggregation hierarchy
because their relationship is generally many-to-many. We
redefine a set function more generally.

Definition 1: Let d,r be class nodes in a condensed
schema. graph such that r is a domain class node of an
attribute of a node 4 in an aggregation hierarchy. Then
we denote. d=r. Let st be class nodes in a condensed
schema graph. If either r=s or , s=t then we denote s~
t. Let x,y be objects in class nodes d,r respectively. If an
attribute of x has the object identifier of an object y or a
set of object identifiers one of which is that of an object
y, then we write x=y. Let a,b be objects. If either a =b
or b=a , then we denote a ~b.

Definition 2: Let d,r be classes such that d~r . Let
D,R be sets of objects in d,r respectively. A set function
F:2° 2% is defined such that F(A)={yER | x & A, x~
yf, for any A &D. And a set function F ':2-2% is defined
such that F'(B)={xED | v & B, x~y}, for any B&R.
We denote F' an-inverse set function of F.
 Lemma 1: Let F be a set function such that F:2° -2
For any D, D; € D and R, R SR,

(i) (D, U D) = F(D;) U F(Dj)

(ii) F(D, N .Dy = F(Dz) N F(Dz)

(iii) F'(Ri U R) = F'(R) U F'(Ry)

(iv) F'(R, 1 Ry =-F'(R)) N F-1(R:)

Proof: Clear from Definition 2.

When X and Y are finite, Lemma . 1 may be extended

to an arbitrary 'number of unions and intersections of
subsets of X and Y. -

Defimtlon 3: Let F:2"—2° be a set function and G 2
—2" be the same. Then the composition of set functions
FG(D)=F [G(D)] for all DEX.

The composition of any number of set functions and
inverse set functions is also defined from definition 3.
Using definition 3, the property of set function shown in
Figure 2 is F'F(A)2A and FF' (B)2B.

Fig. 2. Set function and inverse set function.

compactness, the composition
where (i, 1<j<n}
is a monotonous increasing or decreasing sequence of
-1 respectively.

For notational
F,F,...F; F; is defined to be cF,

integers with “ij.; = i#1 or iy =
Lemma 2: If F; is a set function such that F;:2¥~ 2%~
for i=1,2,...,n, then for CF,, and D, D, <X,
Proof:(i) The mathematical induction is used. For n=1,
from the lemma 1(i). and (ii), Fi(D;UD;)=FyD;) UF(D3).
Suppose it is true for n=k-1 , then CFp, (D;U
D3)=CFi.1(D1) UFi1.1(D2). For n=k, ~
CFi.(D; UD2)=FiCFr1 (D1 U D3)
=F; [CFy1(D; UD2)]
=Fi { CFi.11(D1)) U CFp11(D2)]
=Fi [CFe1(D1)] U Fi [CFipi(D2)]
=FiCFr1,1(D;) U FCFy(D2)
=.CFk_1,1(D1)CFk,1(D2).

(ii) The 'same procedure as (i) is used. Q.E.D.

From Lemma 2, the following general formula is
obtained. : ' :

Corollary 1: Let F; be deflned as in Lemma 2. For D;

< X, for j=1,..m ;

(i) CF(v D)= u} ,CFn (D))

(it) CF,(N\ Dy)=n CFn(Dy)

We define an acceSSIblhty relation with a set function
as follows.

Definition 4: Let D be a set of the objects in a node
of a condensed schema graph. — & D X D is the
relation such that di —d; if (i)i=j or (ii) there exist CFyy
with d; &CF,u({d}) for did;ED. — 1is said to be an
accessibility relation. If di — d, d; is said to be
accessible from d;.: :

Theorem 1: — is an equivalence relation.

Proof: (i) Symmetry : Suppose x; — x;. Let xi — Xp»1.
Then there exists a sequence {Fi} such that Fy 2% w— 2%
for 1 <k<n where X is a set of objects in a node of a

‘condensed schema graph with x; €Xi, ‘x,«; € Xp+; and

Xor1 € CFoi({x}). Let F;' be an inverse set function of
Fi, then there exists CF;} such that x; € CF{L({xae1})-
Therefore x,.; — x;. This implies x; — x;.
(ii) Transitivity : Suppose x; — x; and x; — Xx,. There
exists sequences {Fpll =<p<r}, {Fq|r+1 <q <s} w1th
(a) F,, : oY 9% 1 <p<r

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 167

(b) F, : 25— 2%, r+l1<q=<s

) xi € Xy, xn € Xs Xj € Xras

d) xj € CF,;1 ({xi}), xm € CFsra(ix})
obviously, x, € CFs; ({xi}). So, xi — Xm.
(iii) Reflexivity : By definition 4 x; — xi. Q.E.D.

Theorem 1 says that an accessibility relation is reflexive,
symmetric, and transitive . In addition, since an
accessibility relation is an equivalence relation, an
accessibility relation induces a partition such that any
object is accessible by an object in the same partition
block. '

Definition 5: Let D be a set of the objects of a node
in a condensed schema graph. —CD xD is a relation
such that di < d; if di — d; and for all 4, d; € D. <
is said to be a mutual accessibility relation.

If d — dj, d; and d; are said to be mutually accessible.

Corollary 2: — = «— . .

Proof: If part is trivial. For only if part: If di < dj,
by theorem 1, d; — d; , Hence di < d;
consequently, < is also an equivalence relation.

It is clear that the subsets of objects induced by the
mutual accessibility relation <« are the partition blocks of

related objects.

2. Accessibility Function

When x;—x;, where x;, x;, are the objects of the same
node in a condensed schema graph, it is often the case
that there exists a sequence {xi|l1<k<n} such that x;—x,,
xk—xg+; for 1 <k<n-1 and x;—x, We want to characterize
the situation that 'x;—x; without such sequence {xil <k <

n}. It is denoted x; ° x,

Definition 6: Let X; be the set of objects of a node in
a condensed schema graph for 1<i<n+l and F;2"—2" "
A composition A=CF,, is said to be an accessibility
function if X;=X,«; and X; = X; for 2<i<n. The set of
all accessibility functions defined for a node in a
condensed schema graph is denoted as «.

Lemma 3: Let be the set of objects in a node in a
condensed schema graph and { be the set of all the

accessibility functions defined for C. For x,x; € X x,° x
if and only if for some x; € A({x}) for some A € 4.

Proof: Clear from definition 6.

Previously, we have shown that the relation < induces
a partition for a database. For the set of objects of a
node, < induces a partition. The next theorem is the
basis for a method to find a partition using a set
function.)

Theorem 2: Let S be the set of objects of a node C
in a condensed schema graph and {={A,lI <p<n} be the
set of accessibility functions defined for C. X&S§ is a
maximal set such that x;—x; for all x,x;&X if and only if

to the maximality of X .

X is a minimal set such that A,(X)EX for all p.
Proof:(=) Suppose AyX)&=X for some p. Let
Ap(X)-X=X"= ¢. There must be x,&X and x;&X’ such
that x,EAp({x,}). From Lemma 3, x,—x. Then from
Theorem 1, x,—x,. Hence xs—x, This is a contradiction
So A (X)EX for all p. Now
suppose there exists X”CX such that A,(X")S X" for all p.
Let Xx'=X-X". Since x;—x; for all x,x;€X there exist
X x, X" such that x,—x,. There is a sequence
Xewr Xz o ox ., where xex for 2<I<i and

xnex’ for i+1<n-1 such that x, 2ox, 2 Zox, Ioo

(4]

+x,. In case there is no such sequence between x,

and x,, that is x,-%x, , we can consider x,=x, and
v =x,. From Lemma 3, x, €A4,{x)) for some g¢. So,
A Xy £X’', which is a contradiction. This prbves the
minimality.

(<) Let [x] be a block containing x in the partition
induced by the equivalence relation «—. Suppose xi <=
for some x<X and x; £X. As shown previously, A4(X) &
X for some ¢g. Therefore, for any <X and x; £X, xc
x.. Suppose x;4-x; for some xix;<X. Since «— is an
equivalence relation, [x]jN[x]=¢ .[x]CX, since x; <X and
xi+-x; for any x;£X. Let Y be a maximal set, where [xi]
S YCX, such that x/—x; for all xi,x,&Y. From only if
part of the theorem, A,(Y)SY for all p. This contradicts
the minimality of X. Therefore, xq<—x; for all x,xEX.
Since xifx; for any ;X and x;£X, X is a maximal
set. Q.E.D.

From Theorem 2, a maximal set in which any two
objects are mutually accessible can be obtained by
identifying and using applicable accessibility functions.

3. An Example for the Usage of Set Functions and
Accessibility Functions

A partition method by the set function and the
accessibility function is shown. The set function is the
operation primitive for the static partition algorithm. We
show the set function algorithm as follows:

procedure F(a) : Determine the set of objects, 8 EZY,
whish are connected to one of the objects in a e2", F2*

begin

nH 8 «— {i

2) for all a€a

3) . for all b &€ Y such that a~b
4) B <union (SB,{b})

5) return(8)

end

procedure F '(8) can be defined similarly as F(a). In

“as D

168 ' CHUNG ET AL : A HORIZONTAL PARTITION OF THE OBJECT-ORIENTED DATABASE FOR EFFICIENT CLUSTERING

Figure 3, if a={ab,c}, then . B=F(a)=(ghij}. If B
={ikl}, then a=F'(B)={c,def). .

b T O ~ WO~ T . O -

Fig. 3. F2° .. 2%

Theorem 2 suggests the static partition algorithm. It
says that the minimal subset X such that A,(X)S X for all
accessibility function A” is the maximal subset for a
partition. :

We show an example to find maximal subsets for the
partition of a graph that has only 2 nodes. In Figure 3.
The accessibility function of D is F'F. Let Rr=F'F. {a)
is the maximal subset for the partition of D that satisfies
A (X)SX because Re{({a))=(a}. However, {b] is not the
maximal subset for the partition of D that satisfies Ap(X)
C X because R({b})={b,c} and RH({b}) £={b}.

{bc} is maximal subset for partition of D because
Re({b})=1{b,c}. Likewise, (d,e} and {f} are the maximal
subsets for partition of D because Rp({d,e])ﬁid,e] and
R({M=111. Therefore, D is partitioned into
{la},{bcl,{de}{f). In this example, we see the important
characteristics of the accessibility -function. That is, Re(X)=
R¥(X) and RHX)S X where. R;=ReRr...RrRr. Using these
characteristics, we can get the maximal subset for the
partition of a node by applying Rr repeatedly to the
subset that has an element until RE(X)= R¥™'(X).

To improve the efficiency, we can partition R as well
simultaneously. If F(4)=B,F'(B)=A, then
F(A)=FF'(B)=B and F'(B)=F'F(A)=A. That is, A and B
are the maximal subsets for the partition of D,R
respectively. For example, F({a})={g] and F’(lg})v={a}.
This implies that F'({g))=F'F({a})={a} and
F({al)=FF'([g})=|g]. Therefore {a} and {b} are the
maximal subsets for a partition. Also F({a})={hi} and
F'({hi})={bc}. We can apply a set function again. That
is, F({b,chH={hij} and
F({b,cH=FF'({hij})=(hij) and F'((hijh)=F'F({bct)=
{b.c}. Therefore {b,c} and {h,ij} are the maximal subsets
for partition. Finally the partitions of D,R are
la.gl.ib.chij),\ddkt (£},

DO\ /RO" |
S

F'(4hijD=1b,c} and

ITI. Static Partition Algorithm

In this section , we present a static partition algorithm
that partitions an object-oriented ~database by using
accessibility function. '

Lemma 4: Let a,b,c be class nodes in a condensed
schema graph. Let A,B,C be the object sets of a,b,c
respectively. If a~b and b~c and F:2* 25 G:ZBHZC,
then there exist the natural numbers n,m such that F'
R(FRP({a))=X, for all aX and R}({s})= R2*'({s]) and
RYT)= RMT) and T=FRrZ(la}) for a minimal subset
such that F'G'GF(X)SX and XS4

Proof: Let m be the smallest natural number such that
RE(fa))=RrRy*'({a}). Let FrR:(la))=Y, YSB. Then
F'](Y)=Fl FR2({a})= }?;’(la}). Let n be the smallest natural
number such that RA(Y)= RE(Y). Let RYY)=Y' and G(Y')
and ZSC. then G'(Z)=G" gri*\(Y)= R (V)= R}E(Y)=Y’. Let
X= F'R. FRY({a)). Clearly a=X and X=r~' R% FRX({x])
for all x£X. By Corollary 1, F'R.FRZ({X})=XUXU...
UX=X.

And X=F' R} FR(X)=F (G'G)..(G'G)F(F'F)..(F'F)(X)

. n m
=F'G'G(G'G)..(G'GYFF")..(FFYF(X) 2F'G'GF(X).

n-1 m

So, X 2F'G'GF(X). For X' CX, F' RIFRAX’)=XUX U... U
X=X. If p and q are the smallest natural numbers such
that F' RLFR4(X’), then p<n or g<m by the property of a
set’ function like FF'(4)2A. If g<m , that is, m>1, then
RA{b})=F'F({b})D{b},bDX". Therefore, F'G'GF(X’)=2
F'F(X’)DX". If p<n, that is, n>1, then G'G(K)DK,K<B,
so, F IG'IGF(X) 2F IF(X ’) DX’. Therefore, X is a minimal
subset such that F'FGF(X)CX. QED. - 4

Lemma 4 shows a partition method for the objects of
three nodes connected ‘in serial. If F' FR(a)= R2*'(a)= R
(@ and P=Ry(a)PSA, then F'F(P)=P . And if FR:

(@=T, TSB then FF'Fr!{a))= FR*'(a)= FR2a). So

FF '(T)=T. That is, P,Q are the maximal subsets for the
partition of A and B. Again if ¢! GRYT)= R:*(T)= rYT)
and RHD=V,VESB, then G'G(V)=V. Also if G(V)=W,W<
C, then GG (W)=W because GG'G(V)=G(V). That is V
and W are the maximal subsets for the partition of B and
C. B and C are partitioned completely but A is not
partitioned completely. A is partitioned by £~ RL(T)=F""
R FRY(a). ' '

Now we present a static partition algorithm that
partitions an object-oriented database by searching a
condensed schema graph using depth first search. The
input’ of this algorithm is a condensed schema graph and
its object graph. The output is the partition blocks that
have all objects connected by object identifiers. '

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1936. 169

This algorithm starts from an arbitrary node in an
undirected condensed schema graph and searches the graph
using depth first search and finds a maximal subset for
the partition of each node. Procedure Partition is the basic
algorithm that partitions 2 nodes ww in edge (vw)
Searching the graph using depth first search generates a
spanning tree without cycle edges. We can apply the
method shown in Lemma 4 repeatedly to all tree edges.
The algorithm continues to partition nodes in the tree
edges until it meets a terminal node of the spanning tree.
When the algorithm meets the terminal node, it backtracks
to all visited nodes and partitions again the two nodes
adjacent to an edge. As a result, several subsets are
generated in each visited node of the graph. We cail them
~ N-partition in this algorithm. The collection of the
N-partitions that are connected by object identifiers but
not in the same node is the total partition we want to
" find. We call this T-partition. After this algorithm
partitions all the tree edges, it is applied to the remaining
cycle edges (ie. back edges) in the graph. Each node in
the cycle edge is already partitioned before partitioning
the nodes in cycles edges. If some N-partitions are
merged during the partitioning of the nodes of a cycle
‘edge, the corresponding T-partitions are also merged for
the merged N-partitions. Algorithm Static_Partition and
Procedure Partition are described below.

Algorithm Static_Partition (G: condensed schema graph)

1. Generate a spanning tree from the condensed schema
graph using depth first search.

2. Search the spanning tree using depth first search
until a terminal node is met and apply Procedure
Partition to the visited nodes adjacent to an edge.

3. When a terminal node is met, backtrack to all
visited nodes and partition ‘again the nodes adjacent
to an edge.

4. Merge the connected N-partitions into the T- pamtlon

5. Repeat 2, 3 and 4 until all nodes of the tree edges
are partitioned

6. For each cycle edge, apply the Procedure Partition to
the nodes in the cycle edge.

For merged N-partitions in a node, merge the
T-partitions that have the merged N-partitions.

For connected N-partitions between two nodes, merge
the T-partitions that have the = merged
N-partitions.

Procedure Partition (E: edge)

/* E=(v,w),V,W are the set of objects in nodes wv,w
respectively. */
/* F:2” 2% . a set function between the nodes in the
edge E=(v,w,) */
/* All subsets ACV, BCW that satisfy F(4)=B,F'(B)=A

are called N-partition. */
1. Find all pairs (4,B) such that F(A)=B,F'(V)=A,AS
V,BEW by applying set functions F and F !
repeatedly.

We show an example for the algorithm. We get a
spanning tree from a condensed schema graph as shown
in Figure 4.

Fig. 4. Condensed schema graph and its spanning
tree.

Figure 5 shows an example of the object graph of the
condensed schema graph. The algorithm starts from A
node. It partitions edges (AB), (B,C) and (CD)
sequentially, D is a terminal node (Figure 6 (a)). It
backtracks and partitions again (C,B) and (B,A) (Figure 6
(b)). It searches the remaining tree edges and partitions
(B,E) and (E,F). F is a terminal node (Figure 6 (c)). It
backtracks and partitions again (E.B), (B,C), (C,D), (B,A)
(Figure 6 (d)). All nodes in the tree edges are partitioned.
The nodes of the cycle edge, (B,D), are partitioned. Two
T-partitions are merged (Figure 6 (e), Figure 6 (). The
nodes of the other cycle edge (A,E) are partitioned. Two
T-partitions are merged (Figure 6 (g), Figure 6 (h)).

////

y///% AW

/f?i////4 :

Fig. 5. Object graph of the condensed schema graph

170 CHUNG ET AL : A HORIZONTAL PARTITION OF THE OBJECT-ORIENTED DATABASE FOFI EFFICIENT CLUSTERING'

PP
[T
T

N Iede
LN PRER

[T
B

)7 :
LT

@

(e)

iad

®

()

Fig. 6. Partition ‘steps using algorithm Static_Partition.

The partition method presented in "this paper can be
applied to databasés that have access paths between data,
such as network databases and hierarchical databases as
well as object-oriented databases. In fact, the hierarchical
DBMS[5] such as IMS uses a similar method which
preserves the schema structure in each partition block.

IVv. Conn&]lusﬁon

This paper presented a formal method to find a
parti-tion that are induced by the aggregation hierarchy in
object-oriented databases. However, this method can be
applied to other types of databases that have access paths

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 1, No. 1, 1996. 171

between data. The formal method includes the set function
modeling of databases that have explicit access paths such
as network databases, hierarchical databases and
object-oriented dababases. In addition, the method provide
an accessibility function and an - accessibility - relation to
find a maximal subset for partitioning databases. This
method is a static method that derives an initial partition
of a database. The dynamic repartition is needed as the
database is changed.

V. Acknowledgment

This research was supported in part by the grant from
’93 Multimedia Information Systems Platform Development
Project of the Center for Artificial Intelligence Research.

References

[1]1 J. Banerjee, W. Kim, SJ. Kim, and I.F. Garza,
“Clustering a DAG Databases,” IEEE Transactions
on Software Engineering , Vol. 14, No. 11, Nov.
1988.

[21 E. Bertino and L. Martino, “Object-Oriented Data-
base Management Systems : Concepts and Issues,”
Computer, Vol. 24, No. 4, pp. 33-47, April 1991.

[3] E.E. Chang, and R.H. Katz, “Exploiting Inheritance
and Structure Semantics for Effective Clustering and
Buffering in an Object-oriented DBMS,” Proc. of
ACM SIGMOD Conference, pp. 348-357, 1989.

[4] JR. Cheng, and A.R. Hurson, “Effective clustering
of complex objects in object-oriented databases,”

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

{13]

Proc. of ACM SIGMOD Conference, pp. 22-31,
1991.

C.W. Chung and K.E. McCloskey, “Access to
Indexed Hierarchical Databases Using a Relational
Query Language,” IEEE Transactions on- Knowledge
and Data Engineering, Vol. 5, No.l, pp. 155-161,
February 1993.

K. Hua and C. Tripathy, “Object Skeletons:An
Efficient Navigation Structure for Object-Oriented
Database Systems,™ Proc. of the International Con-
ference on Data Engineering, pp. 508-517, February.
1994.

W. Kim, Introduction to Object-Oriented Databases,
p- 113, The MIT Press, 1991.

W. Kim, JF. Garza, N. Ballouy, D. Woelk,
“Architecture of the ORION Next-Generation
Database System,” IEEE Transactions on Knowledge
and Data Engineering, Vol2, No.l, pp. 109-124,
March 1990.

Y.E. Lien and J.H. Ying, “Design of a Distributed
Entry-Relationship Database System,” Proceedings of
COMPSAC, 1978.

E. Omiecinski, and P. Scheuermann, “A Parallel
Algorithm for Record Clustering,” ACM TODS,
Vol.15, No.4, pp. 599-624, December 1990.

M.T. Ozsu, Principles of Distributed Database Sys-

tem, pp. 562, Prentice Hall, 1991.

M.M. Tsangaris, and JF. Naughton, “A Stochastic
Approach for Clustering in Object Bases,” Proc. of
ACM SIGMOD Conference, pp. 12-21, 1991.

C.T. Yu, CM. Suen, K. Lam, and MXK. Siu,
“Adaptive Record Clustering,” ACM TODS. Vol.10,
No.2, pp. 180-204, June 1985.

172 CHUNG ET AL : A HORIZONTAL PARTITION OF THE OBJECT-ORIENTED DATABASE FOR EFFICIENT CLUSTERING

Chin-Wan Chung received the B.S.
degree in electrical engineering from
Seoul National University in 1973 and
the Ph.D. degree in computer
' engineering from the University of
. Michigan in 1983. From 1983 to 1993,
he was a senior research scientist and a
staff research scientist in the Com-
puter Science Department at General Motors Research
Laboratories. Since 1993, he has been an associate professor
in the Department of Information and Communication
Engineering at Korea Advanced Institute of Science and
Technology, Seoul Campus. He is a member of the Korea
Information Science Society, IEEE Computer Society and
ACM. His research interests include object-oriented
databases, geographic . information systems, —multimedia
databases, distributed databases, and CIM.

: Ju-Hong Lee received the B.S. degree
! MS degree in computer engineering
! from Seoul National University, Seoul,
" Korea, in 1983 and 1985, respectively.
He was a senior software engineering at
IBM. He is currently a Ph.D. candidate
= W% in the Department of Information and
! Communication /Engineering at Korea
Advanced Institute of Science and Technology, Seoul, Korea.
His research interests include clustering and ' transaction
management in distributed databases, and object-oriented
databases. '

Chang-Ryong Kim received the B.S.
degree and M.S. degree in computer
science & statistics from Seoul
National University, Seoul, Korea, in
1990 and 1992, respectively. During
1992-1993, he was a research engineer
- at SamSung Advanced Institute of
. Technology. He is currently a Ph.D.

candidate in the Department of Information and

Communication Engineering at Korea Advanced Institute of
Science and Technology, Seoul, Korea. His research
interests include distributed databases, object-oriented
databases, geographic information system software. He is a
member of the Korea Information Science Society, IEEE
Computer Sociéty and ACM.

