• Title/Summary/Keyword: Aggregate Ratio

Search Result 1,123, Processing Time 0.024 seconds

A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining (고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;Ahn, Sang-Cheol;Lim, Kyung-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

A Study on the Development of Forced Carbonation Reforming Technology for Recycled Aggregates (순환골재의 강제 탄산화 개질 기술 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Park, Won-Jun;Lee, Huck;Kim, Do-Yun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • The most important things for the production of recycled aggregates are saving energy, suppressing the generation of by-product fine particles and sustaining the performance of concrete. As solutions, this study proposes this technology of improving the performance of recycled aggregates through forced carbonation.1) It is to stimulate and carbonate the bond paste part that causes the deterioration of recycled aggregates. Particularly, the purpose of this technology is to fill and chemically stabilize pores inside the bond paste, further improving the quality of recycled aggregates with a decreased absorption rate and an enhanced aggregate strength. Ultimately, it is possible to obtain a carbonation model, depending on the paste ratio and particle-size distribution of recycled aggregates. Moreover, by calculating the optimum carbonation period through the verification of this carbonation model, it is possible to examine how much the strength is improved by the reformation of recycled aggregated.

  • PDF

A Study on the Bond Behavior of Reinforced Concrete Beam (철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究))

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

Reutilization of waste LCD panel glass as a building material (건축자재로서 폐 LCD 판유리의 재활용)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Seo, Eui-Young;Lee, Won-Sub
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.53-57
    • /
    • 2011
  • Recently due to dramatically increasing demand of liquid crystal display (LCD) panel in IT industry, the used LCD panel glass has been wasted from electronic items, and also panel glass of poor quality during manufacturing process. The wasted LCD panel glass was crushed in the range of 0.42 to 2mm and evaluated for its usefulness as a aggregate in production of cement concrete brick. Cement concrete specimens with various mixing ratios of weathered granite soil, LCD panel glass and cement were cured in wetness for 7 days at $40^{\circ}C$ and then tested for uniaxial comprehensive strength (UCS)(KS F 4004 method). Specimen with a mixing ratio, 1:6:3, of weathered granite, LCD panel glass and cement, respectively, showed the highest average in the UCS test($26.51N/mm^2$). It is much higher than that of commercial brick without glass($17.00N/mm^2$). Conclusively waste LCD panel glass can be reutilized economically as a raw building material of good quality.

  • PDF

The Physical Properties of the Block Using Flame Resistant EPS Wastes (폐 난연성 EPS의 혼합조건에 따른 재생골재 블록의 물성에 관한 실험적 연구)

  • Cho, Kwang-Hyun;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.152-153
    • /
    • 2013
  • Based on the Fire Service Act of mandatory provision, new buildings are strictly forced to use fire protection materials. Flame resistant EPS is one of those materials. Unlike conventional EPS that can be fused to make EPS ingot and be recycled for various purposes, flame resistant EPS waste cannot be recycled due to the presence of protective coating that is applied to increase the fire protection properties of EPS. A suitable alternative that can process large amount of flame resistant EPS wastes needs to be developed, and one of the possible alternative is to use them as construction materials. In this research, experiments were designed to observe whether the flame resistant EPS wastes can be utilized as partial replacements of fine aggregates in cement mortar. The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, both compressive strength and absorption capacity met the Korean Standard specification for cement bricks and blocks, indicating that flame resistant EPS wastes can be used for construction purposes.

  • PDF

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.

A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance (소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

State-Owned Enterprises and Debt Sustainability Analysis: The Case of the People's Republic of China

  • Ferrarini, Benno;Hinojales, Marthe
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.1
    • /
    • pp.91-105
    • /
    • 2019
  • The paper aims to combine balance sheet analysis at the firm level with the International Monetary Fund's public debt sustainability assessment framework to assess state-owned enterprises' (SOE) leverage as a contingent liability to the public sector. Based on company data and the interest coverage ratio as a measure of debt at risk, aggregate baseline scenarios are projected to gauge the magnitude of SOE debt as a contingency. SOE's financial and debt ratios are first bootstrapped to generate firm-level distributions and then averaged into a fan chart of the economy-wide SOE contingent liability. Applied to the People's Republic of China as an example, the study finds that by the end of 2015 SOE leverage had grown to a substantial liability. However arbitrary the assumptions underlying these projections, it would appear that even if authorities had to mop up as much as 20% of SOE debt at risk gone bad, this would have been manageable at roughly 2.7% of the gross domestic product in 2016 or 5.5% by 2021. This projection framework is fully amenable to alternative assumptions and settings, which makes it a useful analytical tool to monitor contingent liabilities from non-financial corporate debt that have been building in emerging and advanced economies alike.

Evaluation of Structural Performance of RC Beams retrofitted PVA Fiber to the Change of Replacement Ratio of Recycled Fine Aggregates and Blast Furnace Slag (고로슬래그 미분말 및 순환잔골재를 적용한 PVA섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.3-11
    • /
    • 2018
  • In this study, total nine R/C beams, designed by the PVA Fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength, and ductility capacity were assessed. Test results showed that test specimens (BSPR-20, 40) was increased the maximum load carrying capacity by 3~6% and the ductility capacity by 9~14% in comparison with the standard specimen (BSS). And the specimens (BSPR-60, 80, 100) was decreased the maximum load carrying capacity by 0~4% and the ductility capacity by 79% in comparison with the standard specimen (BSS) respectively.

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.