Versatile Video Coding (VVC) is the most recent video coding standard, which had been developed by Joint Video Expert Team (JVET). It can improve significant coding performance compared to the previous standard, namely High Efficiency Video Coding (HEVC). Although VVC can achieve the powerful coding performance, it requires the tremendous computational complexity of VVC encoder. Especially, affine motion compensation (AMC) was adopted the block-based 4-parameter or 6-parameter affine prediction to overcome the limit of translational motion model while VVC require the cost of higher encoding complexity. In this paper, we proposed the early termination of AMC that determines whether the affine motion estimation for AMC is performed or not. Experimental results showed that the proposed method reduced the encoding complexity of affine motion estimation (AME) up to 16% compared to the VVC Test Model 17 (VTM17).
IEIE Transactions on Smart Processing and Computing
/
제1권2호
/
pp.78-87
/
2012
In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.
Light Field (LF) image can be understood as a set of images captured by a multi-view camera array at the same time. The changes among views can be modeled by a general motion model such as affine motion model. In this paper, we study the impact of affine coding tool of Versatile Video Coding (VVC) on LF image compression. Our experimental results show a small contribution by affine coding tool in overall LF image compression of roughly 0.2% - 0.4%.
A limitation is assumed that In this paper, a generalized method is proposed to extract a period of a motion of on object. To detect a periodic motion, we put restrictions on a stationary camera and on a motion of an object. We ca derive the necessary and sufficient condition that an image sequence consists of the projection of the periodic motion by the affine transformation that is a reasonally good approach to the perspective projection. The difficulty of detecting its periodic motion is to select its have period in sequence and to define its width.
본 논문에서는 비디오 데이타를 분석하여 다양한 카메라의 동작을 정량적으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 카메라의 동작 추출 방법은 어파인 모델을 이용한 방법으로 인접 영상으로부터 추출한 동작 벡터를 어파인 모델에 적용하고 회귀분석법을 통해 어파인 모델을 구성하는 파라미터를 구한다. 그런 다음, 파라미터들의 크기를 분석하고 상호 관계를 해석하여 카메라의 동작을 추출한다. 본 논문에서는 잡음이 포함된 동작 벡터를 필터링하여 사용하므로 잡음에 강건한 결과를 얻을 수 있다. 그리고 어파인 모델을 구성하는 파라미터만을 분석함으로써 카메라의 다양한 동작을 간단하면서도 비교적 정확하게 추출한다. 실험 결과는 카메라의 동작을 정확하게 추출하고 있음을 보여준다.Abstract This paper presents an elegant method, an affine-model based approach, that can qualitatively estimate the information of camera motion. We define various types of camera motion by means of parameters of an affine-model. To get those parameters from images, we fit an affine-model to the field of instantaneous velocities, rather than raw images. We correlate consecutive images to get instantaneous velocities. The size filtering of the velocities are applied to remove noisy components, and the regression approach is employed for the fitting procedure. The fitted values of the parameters are examined to get the estimates of camera motion. The experimental results show that the suggested approach can yield the qualitative information of camera motion successfully.
최근 항공 비디오 영상을 이용한 고해상도 모자이크 영상제작에 대한 연구가 큰 관심사로 대두되고 있다. 그 중, 본 논문에서는 입체 모자이크 영상 제작에 그 목적을 두고 있다. 입체 모자이크 영상은 연속된 비디오 프레임 영상에서 각기 다른 촬영 각도를 가지고 있는 전방과 후방 슬라이스 영상을 추출한 후, 각각을 모자이킹하여 좌우모자이크 영상을 생성함으로써 제작되어진다. 입체 모자이크 영상을 제작하기 위해서는 프레임 영상간의 기하학적 관계를 규명할 수 있는 이동변수(motion parameters)가 결정되어져야 한다. 본 논문에서는 이러한 이동변수 중, 상대적인 이동변수를 규명할 수 있는 부등각 모델을 적용하였다. 이러한 상대적인 이동변수를 사용하여 모자이크 영상을 제작하는 방법을 자유 모자이크라고 한다. 자유 모자이크 과정은 결정된 이동변수를 이용하여 첫 번째 프레임 영상을 기준으로 영상등록을 수행한 후, 전방 및 후방 슬라이스 영상 추출, 접합선 추출, 영상 모자이킹 과정을 거쳐 수행된다. 본 연구의 결과로 좌우 모자이크 영상과 이를 이용한 여색입체 모자이크 영상을 나타내었으며, 정확도 분석을 위하여 종시차 분석을 수행하였다.
본 연구는 Bender(2003), Duncan et al.(2000)등의 Wick 적분을 이용하여, fBm을 이자율모형의 불확실성으로 사용하였다. Affine 모형에 대표적인 CIR, Hull and White 모형, Quadratic 모형, 그리고 HJM 모형에 차례로 적용한 결과 이론적으로 새로운 결과를 얻었으며, 특히 새로운 확률측도(probability measure)를 정의하여, 할인채권의 옵션가격을 제시하였다.
본 논문에서는 비디오 데이터를 분석하여 다양한 카메라의 동작을 정량적으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 카메라의 동작 추출 방법은 어파인 모델을 이용한 방법으로 인접 영상으로부터 추출하는 동작 벡터를 어파인 모델에 적용하고 희귀분석법을 통해 어파인 모델을 구성하는 파라미터를 구한다. 그런 다음, 파라미터들의 크기를 분석하고 상호 관계를 해석하여 카메라의 동작을 추출한다. 본 논문에서는 잡음이 포한된 동작 벡터를 필터링하여 사용하므로 잡음에 강건한 결과를 얻을 수 있다. 그리고 어파인 모델을 구성하는 파라미터만을 분석함으로써 카메라의 다양한 동작을 간단하면서도 비교적 정확하게 추출한다. 실험결과는 카메라의 동작을 정확하게 추출하고 있음을 보여준다.
The motion-based video segmentation provides a powerful method of video compression, because it defines a region with similar motion, and it makes video compression system to more efficiently describe motion video. In this paper, we propose the Modified Fuzzy Competitive Learning Algorithm (MFCLA) to improve the traditional K-menas clustering algorithm to implement the motion-based video segmentation efficiently. The segmented region is described with the affine model, which consists of only six parameters. This affine model was calculated with optical flow, describing the movements of pixels by frames. This method could be applied in the low bit rate video transmission, such as video conferencing system.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제18권2호
/
pp.181-192
/
2014
In this paper, we propose a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frame from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropout or shadowing phenomena of cardiac walls. The proposed method deals with this shape distortion problem and reflects the motion realistic LV shape by applying global deformation modeled as affine transform partitively to the contour. We partition the tracking points on the contour into a few groups and determine each affine transform governing the motion of the partitioned contour points. To compute the coefficients of each affine transform, we use the least squares method with equality constraints that are given by the relationship between the coefficients and a few contour points showing good tracking results. Many real experiments show that the proposed method supports better performance than existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.