• Title/Summary/Keyword: Aerial survey

Search Result 300, Processing Time 0.026 seconds

A Study on Utilizing 1:1,000 Digital Topographic Data for Urban Landuse Classification (도시지역 토지이용분류를 위한 1:1,000 수치지형도 활용에 관한 연구)

  • Min, Sookjoo;Kim, Kyehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.149-156
    • /
    • 2006
  • Existing method of landuse classification using aerial photographs or field survey requires relatively higher amount of time and cost due to necessary manual work. Especially in urban area where the pattern of landuse is densely aggregated, a landuse classification using satellite image is more complex. In this background, this study proposes a landuse classification method to utilize 1:1,000 digital topographic data and IKONOS satellite image. To prove the possibility of this method, the method was applied to Seoul metropolitan area. The results shows the total accuracy of approximately 95% and 14 landuse classes extracted. Based on the results from the pilot study, this method is applicable to landuse classification in urban area.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

A Study on the Application of River Surveying by Airborne LiDAR (항공라이다의 하천측량 적용 방안 연구)

  • Choi, Byoung Gil;Na, Young Woo;Choo, Ki Hwan;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • The river plan executes the role for prevention of disaster and protection of environment, and requires the surveying results with high accuracies for managing river, dam, reservoir which will be the major infrastructures. The purpose of this study is for comparing and analyzing the results of river surveying which is used widely for disaster management and construction industry support. The results are gathered by using LiDAR which is being used in Korea recently and by using Total station. Study area is chosen at upper area of Bukhan River which is located at Gangwon-do. Total 2 cross-sections of the two methods are extracted from the study area. The standard deviation of land part is about 0.017m which shows little difference between two methods, but the Airborne LiDAR results cannot survey the heights of the points accurately at the singular points with vertical structure and water body part. To overcome the problems through this study, there should be ways to survey the bottom river through transmission of water level within the same margin scope as land part and to survey detailed facilities used by laser exactly through continuous research and experiment. When implementation stage comes, this study expect that this document will be utilized variously for making decision in the area of planning and drawing of business and engineering not just for river regarding the major area or the area that people cannot access.

A Study on Dam Exterior Inspection and Cost Standards using Drones (드론을 활용한 댐 외관조사 및 대가기준에 대한 연구)

  • Kim, Tae-Hoon;Lee, Jai-Ho;Kim, Do-Seon;Lee, Suk-Bae
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.608-616
    • /
    • 2021
  • Purpose: Safety inspections by existing personnel have been limited in evaluation and data securing due to concerns about the safety of technicians or difficulty in accessing them, and are becoming a bigger problem as the number of maintenance targets increases due to the aging of facilities. As drone technology develops, it is possible to ensure the safety of personnel, secure visual data, and diagnose quickly, and use it is increasing as safety inspection of facilities by drones was introduced recently. In order to further enhance utilization, it is considered necessary to base a consideration standard for facility appearance investigation by drones, and in this paper, research was conducted on dams. Method: To calculate the quality, existing domestic safety inspection and drone-related consideration standards were investigated, and procedures related to safety inspection using drones were compared and analyzed to review work procedures and construction types. In addition, empirical data were collected through drone photography and elevation image production for the actual dam. Result: Work types for safety inspection of facilities using drones were derived, and empirical survey results were collected for two dams according to work types. The existing guidelines were applied for the adjustment ratios for each structural type and standard of the facility, and if a meteorological reference point survey was necessary, the unmanned aerial vehicle survey of the construction work standard was applied. Conclusion: The finer the GSD in appearance investigation using drones, the greater the number of photographs taken, and the concept of adjustment cost was applied as a correction to calculate the consideration standard. In addition, it was found that the problem of maximum GSD indicating limitations should be considered in order to maintain the safe distance.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images - A Case of Sorasan Mt. Nature Garden, Iksan, South Korea - (무인항공 영상을 활용한 도심녹지 표면온도 특성 분석 - 익산 소라산 자연마당을 대상으로 -)

  • CHOI, Tae-Young;MOON, Ho-Gyeong;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.90-103
    • /
    • 2017
  • This study analyzed the surface temperature characteristics of urban green spaces under high summer temperatures to clarify the functions of green spaces in reducing urban temperatures. We obtained accurate surface temperature data using highresolution unmanned aerial vehicle images of the survey site, which was an isolated green space in the city. We analyzed differences in the surface temperature by land cover type, vegetation type, species type, and the relationship between surface temperature and vegetation volume. Based on the results, among the land cover types, wetlands and forests had low temperatures and paving areas had very high temperatures. Regarding vegetation type, broad-leaved trees had lower temperatures than coniferous trees in forests. However, in planted areas, coniferous trees had lower temperatures than broad-leaved trees. The temperature of long grass was higher than that of short grass, which suggested that the volume of grass affected the temperature. Regarding forest species type, the temperature of broad-leaved Robinia pseudoacacia forest and mixed broad-leaved forest was lower than coniferous Pinus densiflora forest. There was a slight difference in temperature between R. pseudoacacia forest and mixed broad-leaved forest. The analysis of the relationship between vegetation volume and temperature by forest species type indicated a negative correlation, where the temperature decreased with increasing vegetation volume, similar to the results of previous studies. However, we found a weak positive correlation in R. pseudoacacia forest; therefore, an increase in volume may not reduce the surface temperature depending on the dominant species.

Management of Construction Fields Information Using Low Altitude Close-range Aerial Images (저고도 근접 항공영상을 이용한 현장정보관리)

  • Cho, Young Sun;Lim, No Yeol;Joung, Woo Su;Jung, Sung Heuk;Choi, Seok Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.551-560
    • /
    • 2014
  • Compare to other industrial sites, the civil construction work not only takes longer time but also has made of complicated processes, such as the integrated management, process control, and quality control until the completion. However, it is hard to take control the construction sites, since numerous issues are always emerged. The study purposes on providing the dataset to synthetically manage and monitor the civil construction site, main design, drawings, process, construction cost, and others at real-time by using the low altitude close-range aerial images, based on UAV, and the GPS surveying method for treating the three-dimensional spatial information quickly and accurately. As a result, we could provide the latest information for the quick decision-making following from planning to completion of the construction, and objective site evaluation by the high-resolution three-dimensional spatial information and drawings. Also, the present map, longitudinal map, and cross sectional view are developed to provide various datasets rapidly, such as earthwork volume table, specifications, and transition of ground level.

Development of Image-map Generation and Visualization System Based on UAV for Real-time Disaster Monitoring (실시간 재난 모니터링을 위한 무인항공기 기반 지도생성 및 가시화 시스템 구축)

  • Cheon, Jangwoo;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.407-418
    • /
    • 2018
  • The frequency and risk of disasters are increasing due to environmental and social factors. In order to respond effectively to disasters that occur unexpectedly, it is very important to quickly obtain up-to-date information about target area. It is possible to intuitively judge the situation about the area through the image-map generated at high speed, so that it can cope with disaster quickly and effectively. In this study, we propose an image-map generation and visualization system from UAV images for real-time disaster monitoring. The proposed system consists of aerial segment and ground segment. In the aerial segment, the UAV system acquires the sensory data from digital camera and GPS/IMU sensor. Communication module transmits it to the ground server in real time. In the ground segment, the transmitted sensor data are processed to generate image-maps and the image-maps are visualized on the geo-portal. We conducted experiment to check the accuracy of the image-map using the system. Check points were obtained through ground survey in the data acquisition area. When calculating the difference between adjacent image maps, the relative accuracy was 1.58 m. We confirmed the absolute accuracy of the image map for the position measured from the individual image map. It is confirmed that the map is matched to the existing map with an absolute accuracy of 0.75 m. We confirmed the processing time of each step until the visualization of the image-map. When the image-map was generated with GSD 10 cm, it took 1.67 seconds to visualize. It is expected that the proposed system can be applied to real - time monitoring for disaster response.

A Study on the Status of Market, Technology and Legal System of the UAV and its Useful Policies (무인항공기 시장·기술·법제도 실태분석 및 정책적 대응방안 연구)

  • Park, Cheol-Soon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.373-401
    • /
    • 2015
  • The UAV(Unmanned Aerial Vehicle, Drone) technology has been undergoing rapid progress, accompanied with a growth in the market. However, domestic industry standards and technology lag behind such progress happening on the international scene, and in particular in developed countries. Related regulations are also deemed lacking to address the issues that arise with such developments. Meanwhile, as the rise of UAV technology is a fairly recent phenomenon, the gap between Korea and developed countries is not too big. As this technology has high relevance to information and communication technologies, it also offers ample leeway for Korea to catch up in the field of UAV. As such, this paper seeks to provide a survey of the overall technology, market and regulations concerning UAV to identify possible measures on how to address any issues that may arise through proper policies. Due to the progress made in the field of UAV technology and increased penetration rate, striking a right balance between putting in place a proper regulatory system and establishing policies that foster growth in the field has risen as a very important issue. While the importance of establishing a legal system that helps prevent possible risks is indeed important, it must also be acknowledged that excessive regulation can also hinder technological progress. This, in turn would stagnate the market and dampen the entrepreneurial spirit in the society. In the case of new, practical technologies such as UAV, a prompt establishment of regulatory systems and policy measures in terms of policies is a requisite. In brief, in order to promote progress in the UAV industry and at the same time, for public safety and the protection of privacy, there should be an appropriate level on the easing and tightening of the regulation.

A Study on the Accuracy Improvement of Control Point Surveying of Photograph Using Digital Camera (디지털 카메라를 이용한 사진기준점측량의 정확도 향상에 관한 연구)

  • Kim, Kye-Dong;Park, Joung-Hyun;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.203-211
    • /
    • 2009
  • With supply of the domestic digital camera, the relative importance of the digital camera is coming to be high gradually on aerial photogrammetry, the image of digital camera is more applied in image map or digital topographic map production. But, there are cases that do not have position information or attitude information of each photograph in digital camera results. Therefore, we wish to present additional method to get more accurate photograph control point result. In this study, One is called A method, which is the case of entering positioning information of principal point from topographic map as default values that are need to extract tie point automatically using by 56 pieces of photography that are photographed by DMC to the extent to 5 courses and 35 GCP points. The other is called B-method, which is the case of entering exterior orientation parameters that are processed by block adjustment for A-method using by 4 control points in method-1 as default values. We have analyzed about results per control points arrangement for two cases using MATCH-AT that is photograph control point measurement S/W of Germany INPHO company. As a result of analysis, accuracy of B-method was better than that of A-method, and we could get more accurate results if block adjustments are executed including self calibration. Also, it is more effective in expense side that using self calibration for photograph survey in B-method because can reduce GCP numbers.