초록
우리나라에서는 삼면이 바다와 접해있는 반도형태의 국가로 과거부터 해양수산물에 대한 양식이 이루어져 왔다. 최근에는 양식시설물들을 체계적으로 관리하기 위해 생산량에 대한 조사하고 있으며, 조사된 자료를 기반으로 생산물에 대한 가격책정을 수행하여 내수 어족자원을 안정화하고 어민생활권을 보장하고 있다. 이러한 양식시설물의 조사는 매년 항공사진 기반의 수동 디지타이징을 기반으로 하고 있다. 고해상도의 항공사진을 활용한 수동 디지타이징은 양식시설물 별 종류에 따른 특징과 시설물 운용 여부 등을 알고 있는 전문가의 지식을 기반으로 하여 정확한 구획이 수행된다. 그러나 항공사진의 활용은 생육주기가 다른 양식자원들을 모니터링하기에는 경제적, 시간적 한계가 있으며, 전문가의 지식기반 구획 역시 다수의 전문 인력 등이 투입되어야 한다. 그러므로 본 연구에서는 관측 대상지에 대한 대단위 모니터링이 가능한 위성영상을 바탕으로 양식장에 대한 외곽정보 자동으로 검출하는 프로토타입 시스템 개발에 대해 연구하였다. 연구에 사용되는 위성영상은 국내 고해상 위성인 KOMPSAT-3 위성영상 13 Scene을 양식시설이 주로 이용되는 10월에서 4월 사이에 신규 촬영하여 사용하였다. 양식시설의 검출은 가두리식, 연승식, 부류식 양식시설을 검출하였으며 검출 방법은 영상 처리를 통한 ANN 분류기법 및 Polygon 생성기법을 사용하였다. 개발된 프로토타입 시스템의 양식시설 검출율은 약 93% 정도로 나타났다. 위성영상 기반의 양식시설물 외곽정보 검출은 기존 항공사진이 가지는 모니터링의 한계를 개선할 수 있을 뿐만 아니라, 전문가가 양식시설을 탐지하고 판독하는 데 있어 유용하게 지원될 수 있을 것이다. 향후 양식장 시설물별 분류 및 영상 처리 기법의 적용을 통해 양식장 시설물 검출 시스템이 개발되어야 할 것이며, 해당 시스템을 통해 양식시설물 모니터링을 수행하여 관련 의사결정 지원에 도움이 될 수 있을 것으로 판단된다.
Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.