• Title/Summary/Keyword: Advanced DSRC

Search Result 30, Processing Time 0.025 seconds

Performance Analysis of DSRC Transmission Efficiency at MAC Layer (MAC 계층에서의 DSRC 전송 효율 분석)

  • Kwag Su-Jin;Ahn Jin-Ho;Lee Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.527-533
    • /
    • 2006
  • In this paper, we analyze the performance of MAC (Media Access Control) layer in DSRC (Dedicated Short Range Communication). It will be widely applied for ITS (Intelligent Transportation System) services; for example ETC (Electric Toll Control), BIS (Bus Information System) etc., needed to small packet size. But If ITS service is evolving to advance ITS, ADIS (Advanced Driver Information Systems) and AVHS (Advanced Vehicle Highway System) etc, be needed larger packet size. In the future, it may offer more various services such as traffic information, collection, and multimedia information. There are two kind of physical media, IR(Infrared) and RF(Radio frequency). And each system has their own protocol that is adaptive in special characteristics of physical medium for using efficiently limited radio resources. In this paper, we analyze the special characteristics of each system. And we study practical use of some related services expected to be used in the near future, by analyzing the transmission efficiency in each DSRC system.

Development of Advanced DSRC Packet Communication Technology (차세대 DSRC 패킷 통신 기술 개발)

  • Lee Hyun;Park In-Seong;Shin Chang-Sub;Oh Hyun-Seo;Yim Choon-Sik;Cho Kyoung-Rok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.93-100
    • /
    • 2003
  • In this farer, An ADSRC(Advanced Dedicated Short Range Communication) packet communication system developed by ETRI is introduced. The ADSRC system has been developed to provide high-speed, short-range wireless racket communication in roadside environment for mobile office services. The requirements of the ADSRC system for mobile office services and the system design specification to meet them with regard to mobile of nce environment are discussed. The ADSRC packet communication systems consist of the MAC(Medium Access Control) Processor block the OFDM() modem block and the RF block. The MAC processor block handles medium access control. The OFDM modem transmits data packets at up to 24Mbps adaptively and recovers the data from RF block. The ADSRC packet communication system architecture is described.

  • PDF

Performance Analysis of Dedicated Short Range Communication System on the Rician Fading Channel (라이시안 페이딩 환경에서 단거리전용통신(DSRC) 시스템의 성능 분석)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Racian channel have been simulated using the computer simulator. For performance improvement, BCH coding scheme are adopted.

  • PDF

A Simulation Study on ITS/DSRC Communication Networks for Metropolitan Seoul area. (지능형 교통 시스템을 위한 수도권 지역에 대한 DSRC 통신망 시뮬레이션 연구)

  • 이희상;김윤배;박진수;이성룡;최경일
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.103-118
    • /
    • 2000
  • ITS(Intelligent Transportation System) is an advanced system which can effectively handle the current transportation problems. DSRC(Dedicated Short Range Communication) is considered as a promising technology since it has the capability of two-way communication and can serves to implement various ITS services. In this paper, we study DSRC based ITS telecommunication traffic analysis and suggest an architecture and network design of telecommunication network for DSRC services. We also perform a simulation study to validate the proposed network architecture and design for Metropolitan Seoul Area with various network alternatives. In this simulation, we use actual traffic data and road characteristics from Seoul area and use our DSRC service configuration.

  • PDF

A Study on Channel Equalization Technique for High-Speed Processing on DSRC System (DSRC 시스템에서의 고속처리를 위한 채널등화기법에 대한 연구)

  • Sung Tae-Kyung;Choi Jong-Ho;Cho Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.109-116
    • /
    • 2004
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM method is generally Inon as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization. Therefore the equalizer is necessary to cancel ISI to accommodate advanced ISI service with higher bit rate and longer channel delay spread condition. In this thesis, the channel equalizer for the OFDM-DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation. As a result, the performance of Pseudo LMMSE equalizer for the OFDM-DSRC has been improved comparing with LS equalizer at higher bit rate transmission system.

  • PDF

DSRC Strategy and Future ITS (DSRC 전략과 향후의 ITS)

  • Park In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.105-119
    • /
    • 2006
  • The car navigation system to be accompanied to the car on-board equipment system or the development of mobile communication technique, the demand in information communication which connects an interior and the car outside is coming to be high, As applications, ETC/VISC/AHS classes get deceived supply are advanced. The research of DSRC radio systems actively, with medium of communication between the automobile and road, is advanced. DSRC radio systems are appropriate in massive data transfer, in the case which the traffic accident evasion is urgent, the notarization of the preferential control function which is necessary to a medium of communication, guarantee and security are suitable in the high-speed network. Accompanied to the cellular phone which is to be supplied recently suddenly, By complementing and coexisting each other, and it will be developed simultaneously. However, in a connection of this kind of communication system and high-speed DSRC radio system, Hand-over technique (network, radio transmission hand-over), there is a technical subject of the high-speed transmission techniques against the mobile devices and the realization is expected to be difficult in near, until 2010 year is becoming the plan of putting to practical use. Also as the next generation DSRC with 5.8GHz built-on board equipment and the road-side equipment are expected in near. In this paper DSRC systems which will be developed are discussed.

Performance Analysis of OFDM-DSRC System Using LMMSE Equalization Technique (LMMSE 등화기법을 적용한 OFDM-DSRC 시스템의 성능분석)

  • Sung Tae-Kyung;Kim Soon-Young;Rhee Myung-Soo;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.23-28
    • /
    • 2005
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM is generally known as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization Therefore the equalizer is necessary to cancel ISI to accommodate advanced ITS service with higher bit rate and longer channel delay spread condition In this paper, the channel equalizer for the OFDM -DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation.

A Study on Telecommunication Network Architecture for Intelligence Transportation System Based on DSRC Technology (DSRC 기술을 활용한 지능형 교통 시스템의 통신망 구조 연구)

  • Yee, Soung-Ryong;Choe, Kyung-Il;Lee, Hee-Sang;Kim, Yun-Bae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • ITS(Intelligent Transportation System) is an advanced system which can effectively handle the current transportation and tragic problems. In order to beneficially apply ITS to the current transportation infrastructure we need a telecommunication technology which guarantees high speed data transmission between the road side units and the on-board units in the vehicles. DSRC(Dedicated Short Range Communication) is considered as a promising technology since it has the capability of two-way communication and can serve to implement various ITS services. In this paper, we study an architecture of telecommunication network far ITS based on DSRC. We use the ISCNA(Information Systems and Communication Networks Architecture) framework for the method of approach. We first analyze the requirements for ITS services using DSRC in Korea, and then establish a logical architecture for the network. We also analyze the types of data and process between the network components. Based on these we propose an architecture for the telecommunication network for ITS. We also briefly discuss the simulation which we perform to validate the proposed network architecture.

  • PDF

Performance Analysis and Improvement of Dedicated Short Range Communication System (DSRC 시스템의 성능해석 및 개선)

  • Park, Ju-Nam;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.62-73
    • /
    • 2001
  • In this paper, performance of DSRC systems is analyzed with considering the real roads and height of vehicles. The channels are modeled as 2-Ray and 4-Ray with a direct wave and reflected waves by a road and buildings in a physical layer because DSRC keeps LOS propagation characteristics, and the pass loss for each model is calculated respectively. Rician factor is obtained through the calculated path loss on two models for DSRC, and the performance of the systems is analyzed in AWGN and Rician fading channels, Impulsive noise and Rician fading channels respectively. As a result, in Rician fading channels with impulsive noise(A=0.2, ${\Gamma}^{\prime}=0.22$), BER is below $10^{-6}$ when the distance is farther than 80[m] and 40[m] in 2-Ray model and 4-Ray model respectively. For performance improvement, BCH coding scheme and MRC diversity scheme are adopted.

  • PDF

The traffic management system for Emergency Vehicles based on DSRC System (DSRC 시스템 기반의 긴급차량을 위한 교통 관리 시스템)

  • Choi Kwang-Joo;Kim Dae-Hyuk;Yoon Dong-Weon;Park Sang-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.40-48
    • /
    • 2006
  • In this paper, we propose the EPTS(Emergency vehicle Priority Transit system) for a rapid drive or emergency vehicles at the crossroads. The EPTS is one part of real-time traffic management system in the advanced traffic management system. The EPTS needs the connection or a traffic control system and a DSRC system. It can be applied to the real traffic situation considered with other traffic elements. As the result it is possible for the EPTS to nonstop drive because it induces an efficient drive of emergency vehicles. It is also relatively safe at the crossroad, it is expected that the EPTS is suitable for a telematics service which values efficiency above everything else.