• Title/Summary/Keyword: Adsorption equilibrium capacity

Search Result 223, Processing Time 0.024 seconds

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Adsorption Characteristics of Nickel, Zinc and Cadmium Ions using Alginate Bead (Alginate Bead를 이용한 니켈, 아연, 카드뮴의 흡착특성에 관한 연구)

  • Jung, Heung-Joe
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This study investigated the adsorption characteristics of nickel, zinc and cadmium ions from the aqueous solution onto the alginate bead. Adsorption equilibrium capacities of the heavy metal ions increased with increasing initial pH of the solution. The adsorption equilibrium isotherm of the heavy metal ions was well represented by Langmuir equation. The magnitude of adsorption capacity of the heavy metal ions onto alginate bead was the order of cadmium > zinc > nickel. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the heavy metal ions. The internal diffusion coefficient of the heavy metal ions in the intraparticle were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model (SDM) and pore diffusion model (PDM). The internal diffusion of the heavy metal ions in the intraparticles was explained by PDM.

Comparison of Surface Characteristics and Adsorption Characteristics of Activated Carbons Changed by Acid and Base Modification (산과 염기의 개질에 의해 변화된 활성탄의 표면특성과 흡착특성 비교)

  • Lee, Song-Woo;Lee, Min-Gyu;Park, Sang-Bo
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.565-571
    • /
    • 2008
  • The surface properties of activated carbon modified by acids and base were studied. The influence of the surface chemistry on the adsorption of benzene and acetone vapor on modified activated carbons has been investigated The modified activated carbons were obtained by treatment with acetic acid ($CH_3COOH$), nitric acid ($HNO_3$) and sodium hydroxide (NaOH). The modified activated carbons had similar porosity but different surface chemistry and adsorption characteristics. The total surface acidity (sum of functional groups) of activated carbon (AC-AN) treated by nitric acid was 2.6 times larger than that of activated carbon (AC) before the acid treatment. Especially, carboxyl group was much developed by nitric acid treatment. The benzene equilibrium adsorption capacity of AC-AN decreased 20% more than that of AC. However, the acetone equilibrium adsorption capacity of AC-AN increased 20% more than that of AC because of the large increase of carboxyl group and acidity.

Protein Adsorption on Ion Exchange Resin: Estimation of Equilibrium Isotherm Parameters from Batch Kinetic Data

  • Chu K.H.;Hashim M.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm - the saturation capacity, or $q_m$, and the dissociation constant, $K_d$ - are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimating $q_m$ and $K_d$ for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters ($q_m,\;K_d$, and a rate constant), was fitted to a single kinetic profile. The value of $q_m$ determined as the result of this approach was quantitatively consistent with the $q_m$ value derived from the traditional batch equilibrium data. However, the $K_d$ value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.

Adsorption of copper ions from aqueous solution using surface modified pine bark media (표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착)

  • Park, Se-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on copper ion concentrations of 10mg/L, and the removals of copper ions at equilibrium were close to 95%. Adsorption of copper ions could be well described by both the Langmuir and Freundlich adsorption isotherms. The bark was treated with nitric acid to enhance efficiency of copper removal, and sorption capacity was improved by about 48% at equilibrium; mechanisms such as ion exchange and chelation may have been involved in the sorption process. A pseudo second-order kinetic model described the kinetic behavior of the copper ion adsorption onto the bark. Regeneration with nitric acid resulted in extended use of spent bark in the packed column. The horizontal flow mesh reactor allowed approximately 80% removal efficiency, demonstrating its operational flexibility and the potential for its practical use as a bark filter reactor.

Surface Modified Agave sisalana as an Adsorbent for the Removal of Nickel from Aqueous Solutions - Kinetics and Equilibrium Studies

  • Padmini., E.;Kalavathy, M. Helen;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • In the present study Sisal fiber obtained from the leaves of Agave sisalana has been chosen to validate its viability as an adsorbent for the removal of Nickel from aqueous solutions. The material was also surface modified and its effect on adsorption of Nickel was also studied. Agave sisalana fiber was found to be a cheap and effective adsorbent doing away with the need to activate the material therby reducing processing cost. The equilibrium studies indicated that the adsorption capacity of raw fiber and the surface modified fiber was 8.66 and 9.77 mg/g respectively with the Langmuir isotherm describing the adsorption phenomena better than the Freundlich and Temkin isotherm. The adsorption was found to be exothermic from the thermodynamic studies and the kinetics showed that the adsorption phenomena were second order.

Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal (Bone Charcoal에 의한 폐수증의 중금속 흡착특성)

  • Chung, Paul-Gene;Kwak, Dong-Heui;Lee, Jae-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud (Red Mud의 산처리 및 열처리가 불소 제거에 미치는 영향)

  • Kang, Ku;Nyakunga, Expedito;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.210-217
    • /
    • 2015
  • Fluoride removal by acid and heat treated red mud were studied in batch and column system regarding contact time, initial concentration, pH, adsorbent dose, and filter depth. The results showed that acid treated with 0.8 M HCl, had highest adsorption capacity of fluoride and adsorption capacity decreased as heat treatment temperature increased. Sorption equilibrium reached in 30 min at a initial concentration of 50 mg-F/L but 1 h was required to reach the sorption equilibrium at the initial concentration of 500 mg-F/L by 0.8 M acid treated red mud (0.8 M-ATRM). Equilibrium adsorption data were fitted well to Langmuir isotherm model with maximum fluoride adsorption capacity of 23.162 mg/g. The fluoride adsorption decreased as pH increased due to the fluoride competition for favorable adsorption site with $OH^-$ at higher pH. Removal percentage was increased but the amount of adsorption per unit mass decreased by adding the amount of 0.8 M-ATRM. It was concluded that the 0.8 M-ATRM could be used as a potential adsorbent for the fluoride removal from aqueous solutions because of its high fluoride adsorption capacity and low cost.

Moringa Oleifera, A Biosorbent for Resorcinol Adsorption-Isotherm and Kinetic Studies

  • Kalavathy, M. Helen;Swaroop, G.;Padmini, E.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • The adsorption of phenolic compound resorcinol on activated carbons prepared from Moringa oleifera (Drumstick bark) has been investigated. Activated carbon was prepared by impregnating Moringa oleifera with 50% phosphoric acid in the ratio of 1:1 and 1:2(w/w), designated as MOAC1 and MOAC2. Equilibrium and isotherm studies were carried out. The influences of variables such as contact time, initial concentration of resorcinol, carbon dosage in the solution on percentage adsorption and adsorption capacity of the bark have been analysed. The equilibration time was found to be 4 h. Kinetics of resorcinol onto activated carbons was checked for pseudo first order and pseudo second order model. It was found that the adsorption of resorcinol follows pseudo second order kinetics for both MOAC1 and MOAC2. The isotherm data were correlated with isotherm models, namely Langmuir and Freundlich. Adsorption isotherms were satisfactorily fitted by both the Langmuir and Freundlich model for MOAC1 and MOAC2.

Thermal based adsorption of daily food waste with the test of AI grey calculations

  • ZY Chen;Huakun Wu;Yahui Meng;ZY Gu;Timothy Chen
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.107-115
    • /
    • 2024
  • This study proposes the recycling of MVS as a value-added product for the removal of phosphate from aqueous solutions. By comparing the phosphate adsorption capacity of each calcined adsorbent at each temperature of MVS, it was determined that the optimal heat treatment temperature of MVS to improve the phosphate adsorption capacity was 800 ℃. MVS-800 suggests an adsorption mechanism through calcium phosphate precipitation. Subsequent kinetic studies with MVS-800 showed that the PFO model was more appropriate than the PSO model. In the equilibrium adsorption experiment, through the analysis of Langmuir and Freundlich models, Langmuir can provide a more appropriate explanation for the phosphate adsorption of MVS-800. This means that the adsorption of phosphate by MVS-800 is uniform over all surfaces and the adsorption consists of a single layer. Thermodynamic analysis of thermally activated MVS-800 shows that phosphate adsorption is an endothermic and involuntary reaction. MVS-800 has the highest phosphate adsorption capacity under low pH conditions. The presence of anions in phosphate adsorption reduces the phosphate adsorption capacity of MVS-800 in the order of CO 3 2-, SO 4 2-, NO 3- and Cl-. Based on experimental data to date, MVS-800 is an environmentally friendly adsorbent for recycling waste resources and is considered to be an adsorbent with high adsorption capacity for removing phosphates from aqueous solutions. This paper combines the advantages of gray predictor and AI fuzzy. The gray predictor can be used to predict whether the bear point exceeds the allowable deviation range, and then perform appropriate control corrections to accelerate the bear point to return to the boundary layer and achieve.