DOI QR코드

DOI QR Code

Thermal based adsorption of daily food waste with the test of AI grey calculations

  • ZY Chen (Guangdong University of Petrochem Technol, Sch Sci) ;
  • Huakun Wu (School of Computer Science, Guangdong Polytechnic Normal University) ;
  • Yahui Meng (Guangdong University of Petrochem Technol, Sch Sci) ;
  • ZY Gu (Guangdong University of Petrochem Technol, Sch Sci) ;
  • Timothy Chen (Division of Eng App Sci)
  • Received : 2024.01.31
  • Accepted : 2024.07.09
  • Published : 2024.07.25

Abstract

This study proposes the recycling of MVS as a value-added product for the removal of phosphate from aqueous solutions. By comparing the phosphate adsorption capacity of each calcined adsorbent at each temperature of MVS, it was determined that the optimal heat treatment temperature of MVS to improve the phosphate adsorption capacity was 800 ℃. MVS-800 suggests an adsorption mechanism through calcium phosphate precipitation. Subsequent kinetic studies with MVS-800 showed that the PFO model was more appropriate than the PSO model. In the equilibrium adsorption experiment, through the analysis of Langmuir and Freundlich models, Langmuir can provide a more appropriate explanation for the phosphate adsorption of MVS-800. This means that the adsorption of phosphate by MVS-800 is uniform over all surfaces and the adsorption consists of a single layer. Thermodynamic analysis of thermally activated MVS-800 shows that phosphate adsorption is an endothermic and involuntary reaction. MVS-800 has the highest phosphate adsorption capacity under low pH conditions. The presence of anions in phosphate adsorption reduces the phosphate adsorption capacity of MVS-800 in the order of CO 3 2-, SO 4 2-, NO 3- and Cl-. Based on experimental data to date, MVS-800 is an environmentally friendly adsorbent for recycling waste resources and is considered to be an adsorbent with high adsorption capacity for removing phosphates from aqueous solutions. This paper combines the advantages of gray predictor and AI fuzzy. The gray predictor can be used to predict whether the bear point exceeds the allowable deviation range, and then perform appropriate control corrections to accelerate the bear point to return to the boundary layer and achieve.

Keywords

Acknowledgement

The authors are grateful for the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (No. 2021rc002) in Guangdong Province, Peoples R China, as well as to the anonymous reviewers for constructive suggestions.

References

  1. Ahsan A. (2023), "Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater", Membr. Water Treat., 14, 163-173. https://doi.org/10.12989/mwt.2023.14.4.163.
  2. Abdullah, M., Masud, A., and Shin S. (2024), "Application of nickel hexacyanoferrate and manganese dioxide- polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater", Membr. Water Treat., 15(2), 67-78. https://doi.org/10.12989/mwt.2024.15.2.067.
  3. Bai, X., Xu, M., Li, Q. and Yu, L. (2022), "Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines", Adv. Space Res., 70(3), 825-841. https://doi.org/10.1016/j.asr.2022.05.014
  4. Bo, C., Jiangping, H. and Bijoy, G. (2023), "Finite-time observer based tracking control of heterogeneous multi-AUV systems with partial measurements and intermittent communication", Sci. China Inform. Sci., 10. https://doi.org/10.1007/s11432-023-3903-6.
  5. Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Constr. Build. Mater., 433, 136608. https://doi.org/10.1016/j.conbuildmat.2024.136608
  6. Chen, B., Hu, J., Zhao, Y. and Ghosh, B.K. (2022), "Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach", Neurocomput., 481, 322-332. https://doi.org/10.1016/j.neucom.2022.01.038.
  7. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D. and Chen, J. (2017), "Situation-Aware Dynamic Service Coordination in an IoT Environment", IEEE/ACM T Netw., 25(4), 2082-2095. https://doi.org/10.1109/TNET.2017.2705239.
  8. Cheng, G., Li, Q., Su, Z., Sheng, S. and Fu, J. (2018), "Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands", J. Clean. Prod., 175, 572-581. https://doi.org/10.1016/j.jclepro.2017.12.102.
  9. Choi, S., Chen, C.L., Johnston, M.V., Wang, G.S. and Huang, C.P. (2022), "Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles", Membr. Water Treat., 13(1), 29-37. https://doi.org/10.12989/mwt.2022.13.1.029
  10. Christou, C., Philippou, K., Krasia-Christoforou, T. and Pashalidis, I. (2019), "Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers", Carbohydr. Polym., 219, 298305. https://doi.org/10.1016/j.carbpol.2019.05.041.
  11. Di, Y., Li, R., Tian, H., Guo, J., Shi, B., Wang, Z. and Liu, Y. (2023), "A maneuvering target tracking based on fastIMM-extended Viterbi algorithm", Neural Comput. Appl., 1-10. https://doi.org/10.1007/s00521-023-09039-1.
  12. Fang, L., Wu, B. and Lo, I.M. (2017), "Fabrication of silica-free superparamagnetic ZrO2@ Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism", Chem. Eng. J., 319, 258-267. https://doi.org/10.1016/j.cej.2017.03.012.
  13. Fang, Z., Wang, J., Liang, J., Yan, Y., Pi, D., Zhang, H. and Yin, G. (2024), "Authority allocation strategy for shared steering control considering human-machine mutual trust level", IEEE T Intell. Vehicles, 9(1), 2002-2015. https://doi.org/10.1109/TIV.2023.3300152.
  14. Fu, X. and Ren, M. (2024), "Sustainable and low-AoI cooperative data acquisition in UAV-aided sensor networks", IEEE Sensors J., 24(6), 9016-9031. https://doi.org/10.1109/JSEN.2024.3355161.
  15. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  16. Goren, M., Murathan, H.B., Kaya, N., Murathan, A.M. (2021), "Removal of rhodamine b from aqueous solution by using pine cone activated with HNO3", J. Int. Environ. Appl. Sci., 16(3), 123-132.
  17. Hao, H., Wang, Y. and Shi, B. (2019), "NaLa (CO3)2 hybridized with Fe3O4 for efficient phosphate removal: synthesis and adsorption mechanistic study", Water Res., 155, 1-11. https://doi.org/10.1016/j.watres.2019.01.049.
  18. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental Investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725
  19. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021a), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266
  20. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021b), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infra. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768
  21. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021c), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848
  22. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022a), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479
  23. Huang, C., Lai, Z., Wu, X. and Xu, T. (2022b), "Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots", Cyborg Bionic Syst., 2022. https://doi.org/10.34133/cbsystems.0004
  24. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343
  25. Jiang, H., Wang, M., Zhao, P., Xiao, Z. and Dustdar, S. (2021), "A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs", IEEE/ACM Trans. Netw., 29(5), 2228-2241. https://doi.org/10.1109/TNET.2021.3084251.
  26. Jiao, B., Qiao, J., Jia, S., Liu, R., Wei, X., Yun, S. and Cong, B. (2024), "Low stress TSV arrays for high-density interconnection", Engineering, In Press. https://doi.org/10.1016/j.eng.2023.11.023.
  27. Kumar, E., Bhatnagar, A., Hogland, W., Marques, M. and Sillanpaa, M. (2023), "Interaction of inorganic anions with iron-mineral adsorbents in aqueous media-A review", Membr. Water Treat., 14, 55-63. https://doi.org/10.12989/mwt.2023.14.2.055.
  28. Liu, J., Wan, L., Zhang, L. and Zhou, Q. (2011), "Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber", J. Colloid Interf. Sci., 364(2), 490-496. https://doi.org/10.1016/j.jcis.2011.08.067.
  29. Liu, J., Zhou, Q., Chen, J., Zhang, L. and Chang, N. (2013), "Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber", Chem. Eng. J., 215, 859-867. https://doi.org/10.1016/j.cej.2012.11.067.
  30. Liu, J., Wang, H., Liu, M., Zhao, R., Zhao, Y., Sun, T. and Shi, Q. (2022), "POMDP-based real-time path planning for manipulation of multiple microparticles via optoelectronic tweezers", Cyborg Bionic Syst., 2022. https://doi.org/10.34133/2022/9890607
  31. Lu, D., Ma, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
  32. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du X. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng Mech, 149(12). https://doi.org/10.1061/JENMDT.EMENG-7206
  33. Luo, D., Huang, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Collaborative imaging of subsurface cavities using ground-pipeline penetrating radar", Nonlin. Dyn., 76, 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  34. McBride, M.B. (1997), "A critique of diffuse double layer models applied to colloid and surface chemistry", Clays Clay Miner., 45(4), 598-608. https://doi.org/10.1346/CCMN.1997.0450412.
  35. Mohammadzadeh, A., Taghavifar, H., Zhang, C., Alattas, K.A., Liu, J. and Vu, M.T. (2024), "A non-linear fractional-order type-3 fuzzy control for enhanced path-tracking performance of autonomous cars", IET Control Theor. Appl., 18(1), 40-54. https://doi.org/10.1049/cth2.12538.
  36. Morse, G.K., Brett, S.W., Guy, J.A. and Lester, J.N. (1998), "Review: Phosphates removal and recovery technologies", Sci. Total. Environ, 212(1), 69-81.
  37. Muhammad, S., Abdul Khalil, H.P.S., Abd Hamid, S., Albadn, Y. M., Suriani, A.B., Kamaruzzaman, S., Mohamed, A., Allaq, A.A., Yahya, E.B. (2022), "Insights into agricultural-waste-based nano-activated carbon fabrication and modifications for wastewater treatment application", Agriculture, 12(10), 1737. https://doi.org/10.3390/agriculture12101737
  38. Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X. and Wang, X. (2023), "Recent progress in advanced tactile sensing technologies for soft grippers", Adv. Funct. Mater., 33(41), 2306249. https://doi.org/10.1002/adfm.202306249.
  39. Ren, C., Yu, J., Liu, X., Zhang, Z. and Cai, Y. (2022), "Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking", Int. J Min. Sci. Technol., 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010.
  40. Ren, Z., Jia, B., Zhang, G., Fu, X., Wang, Z., Wang, P. and Lv, L. (2021), "Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater", Chemosphere, 262, 127895. https://doi.org/10.1016/j.chemosphere.2020.127895.
  41. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Structures, 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289.
  42. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  43. Shi, M., Lv, L. and Xu, L. (2023), "A multi-fidelity surrogate model based on extreme support vector regression: fusing different fidelity data for engineering design", Eng. Comput., 40(2), 473-493. https://doi.org/10.1108/EC-10-2021-0583.
  44. Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y. and Li, J. (2023a), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309.
  45. Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023b), "End-to-end deep learning model for underground utilities localization using GPR", Auto. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776
  46. Sun, G., Xu, Z., Yu, H. and Chang, V. (2021), "Dynamic network function provisioning to enable network in box for industrial applications", IEEE T Ind. Inform., 17(10), 7155-7164. https://doi.org/10.1109/TII.2020.3042872.
  47. Tan, J., Zhang, K., Li, B. and Wu, A. (2023), "Event-triggered sliding mode control for spacecraft reorientation with multiple attitude constraints", IEEE T Aerosp. Electr. Syst., 59(5), 6031-6043. https://doi.org/10.1109/TAES.2023.3270391
  48. Wang, L., Meng, L., Kang, R., Liu, B., Gu, S., Zhang, Z. and Ming, A. (2022), "Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation", Cyborg Bionic Syst., 2022. https://doi.org/10.34133/2022/9816495
  49. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500
  50. Xu, X., Lin, Z., Li, X., Shang, C. and Shen, Q. (2022), "Multi-objective robust optimisation model for MDVRPLS in refined oil distribution", Int. J. Prod. Res., 60(22), 6772-6792. https://doi.org/10.1080/00207543.2021.1887534
  51. Xu, X. and Wei, Z. (2023), "Dynamic pickup and delivery problem with transshipments and LIFO constraints", Comput. Ind. Eng., 175, 108835. https://doi.org/10.1016/j.cie.2022.108835
  52. Yang, F., Zhang, S., Sun, Y., Tsang, D.C., Cheng, K. and Ok, Y.S. (2019), "Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery", J. Hazard. Mater., 365, 665-673. https://doi.org/10.1016/j.jhazmat.2018.11.047.
  53. Yin, L., Wang, L., Li, J., Lu, S., Tian, J., Yin, Z. and Zheng, W. (2023), "YOLOV4_CSPBi: Enhanced land target detection model", Land, 12(9), 1813. https://doi.org/10.3390/land12091813.
  54. Yin, Y., Guo, Y., Su, Q. and Wang, Z. (2022), "Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning", Drones, 6(8), 215. https://doi.org/10.3390/drones6080215.
  55. Yu, J.H., Song, J.H., Choi, M.C. and Park, S.W. (2009), "Effects of water temperature change on immune function in surf clams, Mactra veneriformis (Bivalvia: Mactridae)", J. Invertebr. Path., 102, 1, 30-5. https://doi.org/10.1016/j.jip.2009.06.002.
  56. Yu, J., Dong, X., Li, Q., Lu, J. and Ren, Z. (2022), "Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems", IEEE T Circ. Syst. I, 69(6), 2567-2578. https://doi.org/10.1109/TCSI.2022.3151464.
  57. Zhang, Z., Chen, J., Wang, J., Han, Y., Yu, Z., Wang, Q. and Yang, S. (2022), "Effects of solder thickness on interface behavior and nanoindentation characteristics in Cu/Sn/Cu microbumps", Welding World, 66(5), 973-983. https://doi.org/10.1007/s40194-022-01261-0
  58. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988
  59. Zhang, S., Li, F., Fu, R., Li, H., Zou, S., Ma, N. and Li, J. (2023), "A versatile continuum gripping robot with a concealable gripper", Cyborg Bionic Syst., 4. https://doi.org/10.34133/cbsystems.0003
  60. Zhang, J., Li, Y. and Zhang, C. (2024), "Pounding induced overturning resistance of FPB-isolated structures considering soil-structure-interactions", Soil Dyn. Earthq. Eng., 177, 108416. https://doi.org/10.1016/j.soildyn.2023.108416
  61. Zhou, X., Lu, D., Du, X., Wang, G. and Meng, F. (2020), "A 3D non-orthogonal plastic damage model for concrete", Comput. Meth. Appl. Mech. Eng., 360, 112716. https://doi.org/10.1016/j.cma.2019.112716
  62. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021a), "Path planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robot. Auto. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828
  63. Zhou, X., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021b), "Application of GIS for the determination of hazard hotspots after direct transportation linkages between Taiwan and China", Nat. Hazard., 66, 191-228. https://doi.org/10.1007/s11069-012-0402-3.
  64. Zhou, Y., Song, Y., Zhao, S., Li, X., Shao, L., Yan, H., Xu, Z. and Ding, S. (2024), "A comprehensive aerodynamic-thermal-mechanical design method for fast response turbocharger applied in aviation piston engines", Propuls. Power Res., 13(2), 145-165. https://doi.org/10.1016/j.jppr.2024.04.001