• Title/Summary/Keyword: Adsorption Isotherms

Search Result 417, Processing Time 0.023 seconds

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores (무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

$CO_2$ Adsorption Behaviors of Activated Carbons Modified by Chelating Groups (킬레이트 관능기가 도입된 활성탄소의 이산화탄소 흡착거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.396-400
    • /
    • 2010
  • In this work, the adsorption behaviors of activated carbons (ACs) containing chelating functional groups were studied in $CO_2$ removal. The ACs were modified by pyrolysis of peroxide and glycidyl methacrylate graft polymerization in order to induce chelating functional groups, such as diethylenetriamine groups on the AC surfaces. The surface functional groups of the ACs were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The textural properties of the ACs were analyzed by $N_2$/77 K isotherms. Adsorption behaviors of the ACs were observed in the amounts of $CO_2$ adsorption. From the results, we found that the chelating functional groups on the AC surfaces led to enhance selectivity and chemisorption on $CO_2$ adsorption in spite of decreasing the physical adsorption properties.

Adsorption Characteristics of Cobalt Ion with Zeolite Synthesized by Coal Fly Ash (석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착특성)

  • Lee, Chang-Han;Suh, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.941-946
    • /
    • 2009
  • Two types of synthetic zeolites, commercially used (Z-WK) and synthesized by coal fly ash (Z-C1), and raw coal fly ash(F-C1) were examined for its kinetics and adsorption capacities of cobalt. Experimental data are fitted with kinetic models, Lagergen $1^{st}$ and $2^{nd}$ order models, and four types of adsorption isotherm models, Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan. Synthesized zeolite (Z-C1) which had 1.51 of Si/Al ratio was synthesized by raw coal fly ash from a thermal power plant. Adsorption capacities with three types of adsorbents, Z-WK, Z-C1, and F-C1, were in the order of Z-C1 (94.15 mg/g) > F-C1 (92.94 mg/g) > Z-WK (88.56mg/g). The adsorption kinetics of Z-WK and Z-C1 with cobalt could be accurately described by a pseudo-second-order rate equation. The adsorption isotherms of Z-WK and Z-C1 with cobalt were well fitted by the Langmuir and Redlich-Peterson equation. Z-C1 will be used to remove cobalt in water as a more efficient absorbent.

Utilization of Waste Mn-ferrite for Treating Heavy Metals in Wastewater (Mn-ferrite의 중금속 흡착특성-폐 페라이트의 중금속폐수 처리 활용 가능성)

  • 이상훈;윤창주;이희란
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.381-385
    • /
    • 2003
  • We investigated possible application of waste ferrite in treating Cd and Pb in wastewater. Adsorption of Cd and Pb on Mn-Ferrite are influenced by several controlling factors such as contact time, heavy metal concentrations, pH and temperature. Both Cd and Pb achieved adsorption equilibrium within 5 minutes. Based upon this kinetic data, 24 hours of contact time was allowed for other experiment. The adsorption of Cd and Pb was high at high pH and high ion concentrations. The reaction was also affected by temperature. Adsorption isotherms fits well with the Freundlich isotherm equation. pH is the main controlling factor in Cd, Pb adsorption on the Mn-ferrite. Cd showed S type adsorption curve while Pb showed sorption edges, depending on the Pb concentrations.

Adsorption Isotherms of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) by Static Method (정적 방법에 의한 2-deoxyuridine(dUrd)과 2-deoxycytidine(dCyd)의 흡착 평형식)

  • Lee, Kwang-Jin;Lee, Sang-Hoon;Row, Kyung-Ho;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.111-114
    • /
    • 2008
  • Adsorption isotherm with the most fundamental information related to chromatography process is obtained experimentally. The adsorption isotherm of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) with ${\mu}$-Bondapak $C_{18}$, static method was adopted in RP-HPLC. The concentrations of mobile and stationary phases were measured with different initial concentrations of dUrd and dCyd, 1, 3, 5, 7, 10 mg/mL, respectively. The adsorption isotherm data were applied by Freundlich, Langmuir, Sips, and Radke-Prausnitz model equations. As a result of the regression analysis, standard error between adsorption isotherm of dUrd and Radke-Prausnitz equation was very low, and adsorption isotherm of dCyd was in an agreement with Sips equation very well.

Study of Xenon Adsorption on Alkaline-Earth Cation in Y Zeolite Based on Chemical Shift in $^{129}Xe$ NMR Spectrum (Y 제올라이트내에서 $^{129}Xe$ 핵자기 공명의 화학적 이동을 근거로 한 알칼리 토금속 양이온의 Xe 흡착 현상 연구)

  • Chanho Park;Ryong Ryoo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.351-359
    • /
    • 1992
  • Interaction of xenon with alkaline-earth cations in Y zeolite supercage was studied by xenon adsorption and $^{129}Xe$ NMR experiments. The CaY and the BaY samples were prepared by exchanging $Ca^{2+}$ and $Ba^{2+}$ into a high-purity NaY zeolite. Xenon adsorption isotherms of these samples were obtained by using a conventional volummetric gas adsorption apparatus in the range of 260 to 320 K and the chemical shift in the $^{129}Xe$ NMR spectrum of the adsorbed xenon was measured at 296 K. The chemical shift against pressure was quantitatively explained assuming that the xenon gas exchanged very rapidly between various adsorption sites consisting of zeolite-framework surface and alkaline-earth ion. From this analysis, it was found that the alkaline-earth ion adsorbed xenon more strongly than $Na^+$ ion and zeolite-framework surface. Baring on the difference of the adsorption strength, the number of the alkaline-earth cations present in the zeolite supercage could be estimated by analyzing the adsorption isotherm.

  • PDF

Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar

  • Choi, Ik-Won;Kim, Jae-Hoon;Lee, Soo-Hyung;Lee, Jae-Kwan;Seo, Dong-Cheol;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.489-494
    • /
    • 2016
  • Carbon-based sorbents such as biochar and activated carbon have been proven to be cost-effective in removing pollutants containing heavy metals from wastewater. The aim of this study was using batch experiment to evaluate the adsorption characteristics of heavy metals in single-metal conditions onto reed biochar for treating wastewater containing heavy metals. The removal rates of heavy metals were in the order of Pb > $Cu{\fallingdotseq}Cd{\fallingdotseq}Zn$, showing the adsorption efficiency of Pb was higher than the other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained from adsorption of Pb on reed biochar. For reed biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Lead was observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The main functional groups of reed biochar were aromatic carbons. Overall, the results suggested that reed biochar could be useful adsorbent for treating wastewater containing Pb.

Characterization of Organic Matters Removed by Biological Activated Carbon (생물활성탄처리에서 제거된 유기물 특성)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.671-675
    • /
    • 2007
  • The objective of this study was to clarify the characteristics of the removed micropollutant since the breakthrough of adsorption ability was occurred in biological activated carbon(BAC) process. The removal efficiency of DOC (Dissolved Organic Carbon) was 36 % in the breakthrough of BAC occurred by NOM (Natural Organic Matter). The most of removal DOC was found out the adsorbable and biodegradable DOC (A&BDOC). But it was not clear to remove by any mechanism because A&BDOC have simultaneously the adsorption of activated carbon and biodegradation by microorganism in BAC. The removal of bromophenol was examined with BAC and rapid sand filter, for investigation of DOC removal mechanism in the breakthrough of BAC. In this experiment, BAC filter has been operated for 20 months for the treatment of reservoir water. The BAC filter was already exhausted by NOM. Bromophenol, adsorbable and refractory matter, was completely removed by BAC filter. Therefore, it might be removed by the adsorption in BAC. Adsorption isotherms of bromophenol were compared to two BACs which was preloaded with 500 daltons and 3,000 daltons of NOM. BAC preloaded with 3,000 daltons of NOM was not decreased to the adsorbability of bromophenol but BAC preloaded with 500 daltons of NOM was greatly decreased to it. These result indicated that NOM of low molecular weight can be removed by adsorption after a long period of operation and the breakthrough by NOM in BAC. Therefore, micropollutants might be removed through adsorption by saturated BAC.

Adsorption Characteristics of Heavy Metals by Various Forest Humic Substances

  • Ahn, Sye-Hee;Koo, Bon-Wook;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.73-82
    • /
    • 2003
  • Various forest humic substances were collected at different climate regions with different forest types, and adsorption of heavy metals such as Cu(II), Zn(II), Cd(II) and Cr(III) were characteristically conducted to obtain optimal adsorption conditions and to evaluate the removal efficiency of heavy metals by each forest humic substance. The adsorption isotherms for Cu(II), Zn(II), Cd(II) and Cr(III) conformed to Langmuir's equation. In the stirred reactor, the removal efficiencies of Cu(II), Zn(II) and Cd(II) by forest humic substances were more than 90% but that of Cr(III) was less than 60%. The adsorption capacities of heavy metals in the stirred reactor were considerably varied depending on the type of forest humic substances. Among humic substances, the one from deciduous forest at subtropical region showed the highest removal efficiency for Cu(II). There was no significant difference in removal efficiency by each heavy metal depending on reaction temperature ranged from 20 to 50oC except for Cr(III), and the adsorptions of Cu(II), Zn(II) and Cd(II) were occurred rapidly in the incipient stage within 10 min, while Cr(III) needed more reaction time to be adsorbed. The stirred and packed bed column reactors showed similar adsorption characteristics of heavy metals by humic substances, but the removal efficiency was considerably higher in the packed bed column reactor than in the stirred reactor. Therefore, in actual operation process, a continuous packed bed column reactor was more economical.

The Phase-Shift Method for the Langmuir Adsorption Isotherms of Electroadsorbed Hydrogens for the Cathodic H2 Evolution Reactions at the Poly-Pt Electrode Interfaces (다결정 Pt 전극계면에서 음극 H2 발생반응을 위한 전착된 수소의 Langmuir 흡착등온식에 관한 위상이동 방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.131-142
    • /
    • 2002
  • The Langmuir adsorption isotherms of the under-potentially deposited hydrogen (UPD H) and the over-potentially deposited hydrogen (OPD H) at the poly-Pt/0.5M $H_2SO_4$ and 0.5 M LiOH aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift method, i.e., the phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new electrochemical method to determine the Langmuir adsorption isotherms $({\theta}\;vs.\;E)$ of the UPD H and the OPD H for the cathodic $H_2$ evolution reactions at the interfaces. At the poly-Pt/0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.1\times10^{-4}$ and 21.0kJ/mol, respectively. At the poly-Pt/0.5M LiOH aqueous electrolyte interface, K transits from 2.7(UPD H) to $6.2\times10^{-6}$ (OPD H) depending on the cathode potential (E) and vice versa. Similarly, ${\Delta}G_{ads}$ transits from -2.5kJ/mol (UPD H) to 29.7kJ/mol (OPD H) depending on I and vice versa. The transition of K and ${\Delta}G_{ads}$ is attributed to the two distinct adsorption sites of the UPD H and the OPD H on the poly-Pt surface. The UPD H and the OPD H on the poly-Pt surface are the independent processes depending on the H adsorption sites themselves rather than the sequential processes for the cathodic $H_2$ evolution reactions. The criterion of the UPD H and the OPD H is the H adsorption sites and processes rather than the $H_2$ evolution reactions and potentials. The poly-Pt wire electrode is more efficient and useful than the Pt(100) disc electrode for the cathodic $H_2$ evolution reactions in the aqueous electrolytes. The phase-shift method is well complementary to the thermodynamic method rather than conflicting.