DOI QR코드

DOI QR Code

The Phase-Shift Method for the Langmuir Adsorption Isotherms of Electroadsorbed Hydrogens for the Cathodic H2 Evolution Reactions at the Poly-Pt Electrode Interfaces

다결정 Pt 전극계면에서 음극 H2 발생반응을 위한 전착된 수소의 Langmuir 흡착등온식에 관한 위상이동 방법

  • Chun, Jang H. (Mission Technology Research Center, Department of Electronic Engineering, Kwangwoon University) ;
  • Jeon, Sang K. (Mission Technology Research Center, Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Jae H. (Mission Technology Research Center, Department of Electronic Engineering, Kwangwoon University)
  • Published : 2002.08.01

Abstract

The Langmuir adsorption isotherms of the under-potentially deposited hydrogen (UPD H) and the over-potentially deposited hydrogen (OPD H) at the poly-Pt/0.5M $H_2SO_4$ and 0.5 M LiOH aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift method, i.e., the phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new electrochemical method to determine the Langmuir adsorption isotherms $({\theta}\;vs.\;E)$ of the UPD H and the OPD H for the cathodic $H_2$ evolution reactions at the interfaces. At the poly-Pt/0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.1\times10^{-4}$ and 21.0kJ/mol, respectively. At the poly-Pt/0.5M LiOH aqueous electrolyte interface, K transits from 2.7(UPD H) to $6.2\times10^{-6}$ (OPD H) depending on the cathode potential (E) and vice versa. Similarly, ${\Delta}G_{ads}$ transits from -2.5kJ/mol (UPD H) to 29.7kJ/mol (OPD H) depending on I and vice versa. The transition of K and ${\Delta}G_{ads}$ is attributed to the two distinct adsorption sites of the UPD H and the OPD H on the poly-Pt surface. The UPD H and the OPD H on the poly-Pt surface are the independent processes depending on the H adsorption sites themselves rather than the sequential processes for the cathodic $H_2$ evolution reactions. The criterion of the UPD H and the OPD H is the H adsorption sites and processes rather than the $H_2$ evolution reactions and potentials. The poly-Pt wire electrode is more efficient and useful than the Pt(100) disc electrode for the cathodic $H_2$ evolution reactions in the aqueous electrolytes. The phase-shift method is well complementary to the thermodynamic method rather than conflicting.

순환전압전류 및 교류임피던스 기법을 이용하여 다결정 Pt/0.5M $H_2SO_4$ 및 0.5M LiOH수용액 계면에서 저전위 수소흡착(UPD H) 과 전위 수소흡착(OPD H)에 관한 Langmuir 흡착등온식 $({\theta}\;vs.\;E)$ 을 연구조사 하였다. 계면에서 치적중간주파수일 때 위상이동$(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ 거동은 표면피복율$(1{\geq}{\theta}{\geq}0)$ 거동에 정확하게 상응한다. 위상이 동 방법 즉 최적중간주파수일 때 위상이동 변화$({-\phi}\;vs.\;E)$는 계면에서 음극 $H_2$ 발생 반응에 관한 UPD H와 OPDH의 Langmuir흡착등온식을 결정할 수 있는 새로운 전기화학적 방법으로 사용할 수 있다 다결정 Pt/0.5M $H_2SO_4$ 수용액 계면에서 OPD H의 흡착평형상수(K)와 표준자유에너지$({\Delta}G_{ads})$는 각각 $2.1\times10^{-4}$와 21.0kJ/mol 이다. 다결정 Pt/0.5M LiOH 수용액 계면에서 K는 음전위(E)에 따라 2.7 (UPD H)에서 $6.2\times10^{-6}$ (OPD H) 또는 $6.2\times10^{-6}$(OPD H)에서 2.7 (UPD H)로 전이한다. 유사하게 ${\Delta}G_{ads}$는 E에 따라 -2.5kJ/mol (UPD H)에서 29.7kJ/mol (OPD H)또는 29.7kJ/mol (OPD H)에서 -2.5kJ/mol (UPD H)로 전이한다. K와 ${\Delta}G_{ads}$의 전이는 다결정 Pt전극 표면의 상이한 UPD H와 OPD H의 흡착부위에 기인한다. 다결정 Pt전극 계면에서 UPD H와 OPD H는 음극 $H_2$ 발생 반응에 따른 순차적 과정이 아니라, 수소 흡착부위 자체에 따른 독립적 과정이다. UPD H와 OPD H의 기준은 음극 $H_2$발생 반응과 전위가 아니라, 수소 흡착부위와 과정이다. 수용액에서 음극 $H_2$발생 반응에는 다결정 Pt선 전극이 단결정 Pt(100)원반 전극보다 더 효율적이고 유용하다 위상이동 방법은 열역학적 방법과 상충적이 아니라, 보완적이다.

Keywords

References

  1. Advances in Electrochemical Science and Engineering v.2 S. Trasatti;H. Gerischer(ed.);C. T. Tobias(ed.)
  2. Structure of Electrified Interfaces J. Lipkowski;P. N. Ross(eds.)
  3. Electrode Kinetics E. Gileadi
  4. Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption B. E. Conway;G. Jerkiewicz(eds.)
  5. Prog. Surf. Sci. v.51 D. M. Kolb https://doi.org/10.1016/0079-6816(96)00002-0
  6. J. Electrochem. Soc. v.143 G. Jerkiewicz;A. Zolfaghari https://doi.org/10.1149/1.1836623
  7. J. Alloys Compounds v.253;254 A. Zolfaghari;F. Villiard;M. Chayer;G. Jerkiewicz
  8. Prog. Surf. Sci. v.57 G. Jerkiewicz https://doi.org/10.1016/S0079-6816(98)00015-X
  9. Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption M. W. Breiter;G. Staikov;W. J. Lorenz;B. E. Conway(ed.);G. Jerkiewicz(ed.)
  10. Electrochim. Acta v.32 D. A. Harrington;B. E. Conway https://doi.org/10.1016/0013-4686(87)80005-1
  11. J. Electroanal. Chem. v.446 J. Barber;S. Morin;B. E. Conway https://doi.org/10.1016/S0022-0728(97)00652-9
  12. J. Phys. Chem. v.100 G. Jerkiewicz;A. Zolfaghari https://doi.org/10.1021/jp960130n
  13. J. Electrochem. Soc. v.144 A. Zolfaghari;M. Chayer;G. Jerkiewicz https://doi.org/10.1149/1.1837955
  14. J. Electroanal. Chem. v.412 S. Morin;H. Dumont;B. E. Conway https://doi.org/10.1016/0022-0728(96)04612-8
  15. J. Electroanal. Chem. v.467 A. Zolfaghari;G. Jerkiewicz https://doi.org/10.1016/S0022-0728(99)00084-4
  16. Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption G. Jerkiewicz;A. Zolfaghari;B. E. Conway(ed.);G. Jerkiewicz(ed.)
  17. Interfacial Electrochemistry B. E. Conway;A. Wieckowski(ed.)
  18. Electrosorption E. Gileadi;E. Gileadi(ed.)
  19. J. Electrochem. Soc. v.145 J. H. Chun;K. H. Ra https://doi.org/10.1149/1.1838875
  20. J. Korean Electrochem. Soc. v.2 J. H. Chun;C. D. Cho
  21. Hydrogen at Surfaces and Interfaces J. H. Chun;K. H. Ra;G. Jerkiewicz(ed.);J. M. Feliu(ed.);B. N. Popov
  22. J. Korean Electrochem. Soc. v.3 J. H. Chun;K. H. Mun;C. D. Cho
  23. Int. J. Hydrogen Energy v.26 J. H. Chun;K. H. Ra;N. Y. Kim https://doi.org/10.1016/S0360-3199(01)00028-3
  24. J. Korean Electrochem. Soc. v.4 J. H. Chun;S. K. Jeon
  25. J. Korean Electrochem. Soc. v.4 J. H. Chun;S. K. Jeon
  26. J. Electrochem. Soc. v.149 J. H. Chun;K. H. Ra;N. Y. Kim https://doi.org/10.1149/1.1497402
  27. Interfacial Electrochemistry E. Gileadi;E. Kirowa-Eisner;J. Penciner
  28. Characterization of Solid Surfaces D. M. Macarthur;P.F. Kane(ed.);G. B. Larrabee(ed.)
  29. J. Electroanal. Chem. v.150 F. T. Wagner;P. N. Ross https://doi.org/10.1016/S0022-0728(83)80198-3
  30. Electrochem. Solid-State Lett. v.3 J. Jiang;A. Kucemak https://doi.org/10.1149/1.1391208
  31. Electrode Kinetics E. Gileadi
  32. Electrochemical Surface Science of Hydrogen Adsorption and Absorption A. Zolfaghari;G. Jerkiewicz;G. Jerkiewicz(ed.);P. Marcus(ed.)
  33. Interfacial Electrochemistry J. Clavilier;A. Wieckowski(ed.)
  34. Interfacial Electrochemistry N. M. Markovic;P. N. Ross;A. Wieckowski(ed.)
  35. Electrode Kinetics E. Gileadi
  36. Interfacial Electrochemistry E. Gileadi;E. Kirowa-Eisner;J. Penciner
  37. Transient Techniques in Electrochemistry D. D. MacDonald
  38. Electrochemical Impedance: Analysis and Interpretation J. R. Scully;D. C. Silverman;M. W. Kendig
  39. Electrode Kineics E. Gileadi
  40. J. Electrochem. Soc. v.143 S. Sarangapani;B. V. Tilak;C. P. Chen https://doi.org/10.1149/1.1837291
  41. Electrochemistry and Materials Science of Cathodic Hydrogen Adsorption and Adsorpton S. S. Buttarello;G. Tremiliosi-Filho;E. R. Gonzalez;B. E. Conway(ed.);G. Jerkiewicz(ed.)
  42. J. Electroanal. Chem. v.39 R. D. Armstrong;m. Henderson https://doi.org/10.1016/S0022-0728(72)80477-7
  43. Laplace Transforms for Electronic Engineers J. G. Holbrook
  44. Modern Aspects of Electrochemistry v.3 E. Gileadi;B. E. Conwat;JOM. Bockris(ed.);B. E. Conway(ed.)
  45. Electrode Kinetics E. Gileadi
  46. Electrosorption A. K. N. Reddy;E. Gileadi(ed.)
  47. Comprehensive Treatise of Electrochemistry v.7 A. J. Apple;B. E. Conway(ed.);JOM. Bockris(ed.);E. Yeager(ed.);S. U. M. Khan(ed.);R. E. White(ed.)
  48. Electrode Kinetics E. Gileadi
  49. Electrochim. Acta v.45 B. E. Conway;G. Jerkiewicz https://doi.org/10.1016/S0013-4686(00)00523-5
  50. Hydrogen at Surfaces and Interfaces B. E. Conway;G. Jerkiewicz;G. Jerkiewicz(ed.);J. M. Feliu(ed.);B. N. Popov(ed.)
  51. Alfa Aesar Research Chemicals, Metals, and Materials Johnson Matthey Co.

Cited by

  1. Langmuir Adsorption Isotherms of Overpotentially Deposited Hydrogen at Poly-Au and Rh/H[sub 2]SO[sub 4] Aqueous Electrolyte Interfaces vol.150, pp.4, 2003, https://doi.org/10.1149/1.1554919
  2. Response to “Comment on ‘Langmuir Adsorption Isotherms of Overpotentially Deposited Hydrogen at Poly-Au and Rh/H[sub 2]SO[sub 4] Aqueous Electrolyte Interfaces: Qualitative Analysis Using the Phase-Shift Method’ ” [Journal of The Electrochemical Society, 150, E207 (2003)] vol.151, pp.9, 2004, https://doi.org/10.1149/1.1783911
  3. Constant Correlation Factors between Temkin and Langmuir or Frumkin Adsorption Isotherms at Poly-Pt, Re, and Ni/Aqueous Electrolyte Interfaces vol.7, pp.4, 2004, https://doi.org/10.5229/JKES.2004.7.4.194