In the field of computer graphics, it approached the investigation of outstanding performance and high speed. Although most introduced Anti-Aliasing method were to meet these, it was not to improve speed. Because Anti-Aliasing method was focus on only qualify. Anti-Aliasing Effect is compensated from movement of object on the screen. Speed is important in the REAL-TIME application program like as 3D games. Cause Anti-Aliasing which needs great amount of time is not used in general. This Paper suggest the Efficient Anti-Aliasing method which apply Two-Point Anti-Aliasing Method that informs brightness data of the screen and use adjacent brightness data for real-time rendering.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.69-72
/
2011
In this paper, we propose a method to track the movement of camera from the video sequences. This method is useful for video analysis and can be applied as pre-processing step in some application such as video stabilizer and marker-less augmented reality. First, we extract the features in each frame using corner point detection. The features in current frame are then compared with the features in the adjacent frames to calculate the optical flow which represents the relative movement of the camera. The optical flow is then analyzed to obtain camera movement parameter. The final step is camera movement estimation and correction to increase the accuracy. The method performance is verified by generating a 3D map of camera movement and embedding 3D object to the video. The demonstrated examples in this paper show that this method has a high accuracy and rarely produce any jitter.
The multilevel grid file(MLGF) is a dynamic multidimensional file organization supporting multi-attribute accesses efficiently. The paper proposes new method for batch-constructing MLGFs. Our method consists of two phases. The first phase begins by relocating all the objects in order that logically adjacent objects in multidimensional domain space are clustered in one dimensional physical space. For this, our method employs the Z-ordering scheme, which effectively maps multidimensional space into one dimensional space preserving proximity. The second phase paginates the relocated objects and creates leaf level directory entries, each of which corresponds to a object page. Simultaneously, it performs same actions on the directory entries recursively in a bottom-up fashion until the root directory fits in a page. For performance evaluation, we analyze our method in terms of the number of page accesses. The result shows the optimality of our method.
There exist geometrically invariant relations in single-view images under a specific geometrical structure. This invariance may be utilized for 3D object recognition. Two types of invariants are compared in terms of the robustness to the variation of the feature points. Deviation of the invariant relations are measured by adding random noise to the feature point location. Zhu’s invariant requires six points on adjacent planes having two sets of four coplanar points, whereas the Kaist method requires four coplanar points and two non-coplanar points. Experimental results show that the latter method has the advantage in choosing feature points while suffering from weak robustness to the noise.
In this paper, we propose a method for estimating the human height by using downward depth images. We detect a point with the lowest depth value in an object as top of the head and estimate the height by calculating the depth difference with the floor. Since the depth of the floor varies depending on the angle of the camera, the correction formula is applied. In addition, the binarization threshold is variably applied so that height can be estimated even when several people are adjacent. Simulation results show that the proposed method has better performance than the conventional methods. The proposed method is expected to be widely used in body measurement, intelligent surveillance, and marketing.
A signaling system for a single-track railroad has been specified in CafeOBJ. In this paper, we describe the specification of arbitrary two adjacent stations connected by a single line that is called a two-station system. The system consists of two stations, a railroad line (between the stations) that is also divided into some contiguous sections, signals and trains. Each object has been specified in terms of their behavior, and by composing the specifications with projection operators the whole specification has been described. A safety property that more than one train never enters a same section simultaneously has also been verified with CafeOBJ.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.8
/
pp.60-67
/
1996
In this paper, we propose a new temporal interpolation method based on spatial filtering. Compared with the conventional method, the proposed one may use a few adjacent frames and apply temporal lowpass filtering. To develop this method, we follow the basic approach of sampling rate conversion. Additionally, we use some assumption of video sequence : moving object has constant velocity rigid translational motion. From them, spatial filtering for temporal sampling rate conversion is described. This method has a lot of noise immunity on a motion vector and doesn't make a great difference from the original frame. The interpolated frame shows moderate change even there is a great time difference. This method has exactly same description of motion adaptive spatial filter which has an efficient temporal band-limiting characteristics. It imposes the possibility to make video sequence with good pictural quality.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.656-659
/
2004
최근 많은 연구에서, 동일한 영상그룹들로부터 추출된 저수준의 특징들을 이용해서 고수준의 정보를 분석한 뒤, 이를 이용해서 영상을 분류하는 방법들을 소개하고 있다. 이러한 연구는 CBIR의 인덱싱에서 저수준의 특징만을 사용할 때 발생하는 의미적인 차이(semantic gap)문제를 해결하여, 검색의 효율을 높일 수 있게 한다. 하지만 이들 연구는 대부분 전경(scenery)영상만을 대상으로 하고 있다. 한편 영상을 객체 단위로 다루는 것은 CBIR의 성능을 크게 향상 시킬 수 있는 요인이 된다. 왜냐하면 대부분의 사용자는 관심있는 객체가 포함된 영상을 검색하기 원하기 때문이다. 본 논문에서는 영상의 객체를 인공객체와 자연객체로 분류하는 방법을 제안한다. 인공객체의 경우 자연객체에 비해 상대적으로 직선형태의 에지가 많이 발견되며 객체를 구성하는 패턴이 규칙적이고 방향성을 가진다. 또한 인공객체는 자연객체에 비해 객체영역의 경계가 직선에 의한 단순한 형태로 나타난다. 이러한 특징들을 EDH(edge Direction Histogram)의 에너지, EDAS(Energy Difference of Adjacent Sector)와 가버 필터를 통해 추출하여 분류에 이용한다. 실험을 통하여 각 특징들을 개별적으로 사용해서 76%에서 84% 사이의 분류 정확성을 얻었으며, 제안한 머징 방법을 이용하여 최종적으로 약 90%의 정확성으로 분류하였다.
In this paper, an efficient connected component labeling (CCL) method was proposed. The proposed method is based on GPU parallelism. The CCL is very important in various applications where images are analysed. However, the label of each pixel is dependent on the connectivity of adjacent pixels so that it is not very easy to be parallelized. In this paper, a GPU-based parallel CCL techniques were proposed and applied to the analysis of radar signal. Since the radar signals contains complex and large data, the efficiency of the algorithm is crucial when realtime analysis is required. The experimental results show the proposed method is efficient enough to be successfully applied to this application.
Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.