• Title/Summary/Keyword: Adipose-derived stem cell

Search Result 124, Processing Time 0.022 seconds

Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

  • Lee, Jong Hoon;Lee, Kuk Han;Kim, Min Ho;Kim, Jun Pyo;Lee, Seung Jae;Yoon, Jinah
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • Background This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. Methods The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). Results The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. Conclusions MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

Xenogeneic Humoral Immune Responses to Human Mesenchymal Stem Cells in Mice

  • Jun-Man Hong;Jin-Hee Kim;Gwang-Hoon Kim;Hyun-Mu Shin;Young-il Hwang
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • Background and Objectives: Many preclinical studies have been conducted using animal disease models to determine the effectiveness of human mesenchymal stem cells (hMSCs) for treating immune and inflammatory diseases based on the belief that hMSCs are not immunogenic across species. However, several researchers have suggested xenogeneic immune responses to hMSCs in animals, still without detailed features. This study aimed to investigate a xenogeneic humoral immune response to hMSCs in mice in detail. Methods and Results: Balb/c mice were intraperitoneally injected with adipose tissue-derived or Wharton's jelly-derived hMSCs. Sera from these mice were titrated for each isotype. To confirm specificity of the antibodies, hMSCs were stained with the sera and subjected to a flow cytometic analysis. Spleens were immunostained for proliferating cell nuclear antigen to verify the germinal center formation. Additionally, splenocytes were subjected to a flow cytometric analysis for surface markers including GL-7, B220, CD4, CD8, CD44, and CD62L. Similar experiments were repeated in C57BL/6 mice. The results showed increased IgG1 and IgG2a titers in the sera from Balb/c mice injected with hMSCs, and the titers were much higher in the secondary sera than in the primary sera. These antibodies were specifically stained the hMSCs. Germinal centers were observed in the spleen, and flow cytometric analysis of the splenocytes showed higher frequencies of centroblasts (B220+ GL7+) and memory T cells (CD62L+ CD44+) both in CD4+ and CD8+ subsets. Similar results were obtained for C57BL/6 mice. Conclusions: hMSCs induced a humoral immune response in mice, with characters of T cell-dependent immunity.

Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells

  • You, Ji-Eun;Lee, Seung-Wan;Kim, Keun-Sik;Kim, Pyung-Hwan
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • Radiation therapy is one of the primary options for the treatment of malignant tumors. Even though it is an effective anti-cancer treatment, it can cause serious complications owing to radiation-induced damage to the normal tissue around the tumor. It was recently reported that normal stem cell response to the genotoxic stress of ionizing radiation can boost the therapeutic effectiveness of radiation by repairing damaged cells. Therefore, we focused on annexin A-1 (ANXA1), one of the genes induced by low-dose irradiation, and assessed whether it can protect adipose-derived stem cells (ADSCs) against oxidative stress-induced damage caused by low-dose irradiation and improve effectively cell survival. After confirming ANXA1 expression in ADSCs transfected with an ANXA1 expression vector, exposure to hydrogen peroxide (H2O2) was used to mimic cellular damage induced by a chronic oxidative environment to assess cell survival under oxidative conditions. ANXA1-transfected ADSCs demonstrated that increased viability compared with un-transfected cells and exhibited enhanced anti-oxidative properties. Taken together, these results suggest that ANXA1 could be used as a potential therapeutic target to improve the survival of stem cells after low-dose radiation treatment.

Composition of a Medium for Serum-free Culture of an Adipose-derived Stem Cell Line Established with a Simian Virus 40 T Antigen (Simian virus 40의 T항원 도입으로 수립한 지방유래줄기세포주의 효율적인 무혈청 배양법 및 무혈청 배지조성)

  • Kim, Gyu Bin;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1301-1307
    • /
    • 2014
  • Adipose-derived stem cells (ADSCs) are considered promising tools for tissue regeneration. However, ADSCs have very poor proliferation capacity. Therefore, fetal bovine serum (FBS) is generally added to the culture media of ADSCs. As FBS contains many uncharacterized components that may affect cellular functions, methods for serum-free cultures of ADSCs have been widely investigated. In this study, to develop an efficient method for a serum-free culture of ADSC-T, we used an ADSC line established by introducing the simian virus 40 (SV40) T gene into primary ADSCs. We then investigated the effect of amino acids, vitamins, and other components on the growth of ADSC-T. When the ADSC-T cells were plated with DMEM/F12 serum-free medium, the cells did not proliferate, and the mixture of amino acids, vitamins, and B27 supplement did not increase the growth of the cells. However, when the ADSC-T cells were provided with serum-free DMEM/F12 after they had been cultured with serum-supplemented DMEM for 24 h, the cells proliferated, and the vitamins and B27 supplement increased the cell growth. Stem-Pro serum-free medium also appeared to be useful as a suspension culture for the ADSC-T cells. The ADSC-T cells secreted large amounts of proteins of around 70 kDa. Insulin-like growth factor (IGF) and fibroblast growth factor basic (FGF basic) were secreted by ADSC-T in larger amounts in the serum-free culture than in the serum-supplemented culture.

Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

  • Sung, Ha-Min;Suh, In-Suck;Lee, Hoon-Bum;Tak, Kyoung-Seok;Moon, Kyung-Min;Jung, Min-Su
    • Archives of Plastic Surgery
    • /
    • v.39 no.1
    • /
    • pp.51-54
    • /
    • 2012
  • With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs) therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane) injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a $3{\times}3cm$ skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm) on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics.

Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes (인체 섬유아세포 및 케라티노사이트에 대한 지방줄기세포 분비물의 세포생물학적 기능)

  • Lee, Jae-Seol;Lee, Jong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.117-127
    • /
    • 2012
  • The beneficial effects of adipose-derived stem cell conditioned media (ADSC-CM) for skin regeneration have previously been reported, despite the precise mechanism of how ADSC-CM promotes skin regeneration remaining unclear. ADSC-CM contains various secretomes and this may be a factor in it being a good resource for the treatment of skin conditions. It is also known that ADSC-CM produced in hypoxia conditions, in other words Advanced Adipose-Derived Stem cell Protein Extract (AAPE), has excellent skin regenerative properties. In this study, a human primary skin cell was devised to examine how AAPE affects human dermal fibroblast (HDF) and human keratinocyte (HK), which both play fundamental roles in skin regeneration. The promotion of collagen formation by HDFs was observed at 0.32 mg/ml of AAPE. AAPE treatment significantly stimulated stress fiber formation. DNA gene chips demonstrated that AAPE in HKs (p<0.05) affected the expression of 133 identifiable transcripts, which were associated with cell proliferation, migration, cell adhesion, and response to wounding. Twenty five identified proteins, including MMP, growth factor and cytokines such as CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, and MMP-19, were contained in AAPE via antibody arrays. Thus, AAPE might activate the HK biological function and induce the collagen synthesis of HDF. These results demonstrate that AAPE has the potential to be used for clinic applications aimed at skin regeneration.

Regenerative Effect of Adipose Derived Mesenchymal Stem Cells on Ganglion Cells in the Hypoxic Organotypic Retina Culture

  • Meital Ben Dov;Bryan Krief;Moshe Benhamou;Ainat Klein;Shula Schwartz;Anat Loewenstein;Adiel Barak;Aya Barzelay
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.244-249
    • /
    • 2023
  • Background and Objectives: To examine whether ischemic retinal ganglion cells (RGCs) will be salvaged from cell death by human adipose-derived mesenchymal stem cells (ADSCs) in an organotypic retina model. Methods and Results: Deprived of arterial oxygen supply, whole mice retinas were cultured as an ex vivo organotypic cultures on an insert membrane in a 24-well plate. The therapeutic potential of ADSCs was examined by co-culture with organotypic retinas. ADSCs were seeded on top of the RGCs allowing direct contact, or at the bottom of the well, sharing the same culture media and allowing a paracrine activity. The number of surviving RGCs was assessed using Brn3a staining and confocal microscopy. Cytokine secretion of ADSCs to medium was analyzed by cytokine array. When co-cultured with ADSCs, the number of surviving RGCs was similarly significantly higher in both treatment groups compared to controls. Analysis of ADSCs cytokines secretion profile, showed secretion of anti-apoptotic and pro-proliferative cytokines (threshold>1.4). Transplantation of ADSCs in a co-culture system with organotypic ischemic retinas resulted in RGCs recovery. Since there was no advantage to direct contact of ADSCs with RGCs, the beneficial effect seen may be related to paracrine activity of ADSCs. Conclusions: These data correlated with secretion profile of ADSCs' anti-apoptotic and pro-proliferative cytokines.

IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells

  • Yang, Hui-Ying;Qu, Rong-Mei;Lin, Xiao-Shan;Liu, Tong-Xin;Sun, Quan-Quan;Yang, Chun;Li, Xiao-Hong;Lu, Wei;Hu, Xiao-Fang;Dai, Jing-Xing;Yuan, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10115-10119
    • /
    • 2015
  • Purpose: The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. Materials and Methods: MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; ${\gamma}$-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. Results: AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. Conclusions: Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.

A Testa Extract of Black Soybean (Glycine max (L.) Merr.) suppresses Adipogenic Activity of Adipose-derived Stem Cells

  • Jeon, Younmi;Lee, Myoungsook;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.19 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Black soybean teata is helpful to preventing obesity through enhancing energy expenditure and suppressing accumulation in mesenteric adipose tissue. The ethanol testa-extract of Cheongja #3 black soybean (ETCBS) is also have similar effects on obesity. So far, it is not clear whether the ethanol testa extract of black soybean can have effect on the characters of subcutaneous adipose stem cells such as proliferation, activity, and adipogenicity. The doubling time was different between subcutaneous adipose-derived stem (ADS) and visceral ADS cells. By the in vitro culture and passage, the doubling time was increased both of them. The shape was not different between groups and their passages were not cause the change of shapes. In the case of visceral ADS cells, the doubling time was 62.3 h or 40.3 h in control or high fat diet administrated mice, respectively, but not modified in subcutaneous ADS cells. ETCBS administration caused of increased the doubling time from 62.3 h to 84.2 h. ETCBS had suppressive effects on the cellular activity of subcutaneous ADS cells. The intensity of Oil Red O staining was very faint in 100 and $200{\mu}g/mL$ ETCBS treated groups. The amounts of accumulated triglyceride were also significantly low in 100 and $200{\mu}g/mL$ treated groups. From these results we know that the doubling times and the effects of ETCBS are different by the anatomical origin of ADS cells. It also suggested that ETCBS may suppress the differentiation of subcutaneous ADS cells into the precursors and maturing of adipocytes.

Simvastatin Induces Osteogenic Differentiation and Suppresses Adipogenic Differentiation in Primarily Cultured Human Adipose-Derived Stem Cells

  • Sun, So-Hyun;Lee, Il-Kyu;Lee, Jee-Won;Shim, In-Sop;Kim, Se-Hong;Kim, Kyung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.353-361
    • /
    • 2009
  • Recent in vitro and in vivo animal studies have reported that statin, a cholesterol-lowering drug, stimulate osteogenic differentiation. In the present study, we investigated the effect of simvastatin on osteogenic and adipogenic differentiation in primarily cultured human adipose-derived stem cells (hADSCs). The simvastatin treatment significantly increased the positive cell numbers in alkaline phosphatase and von Kossa staining, and enhanced the expression levels of bone morphogenic protein (BMP)-2, core binding factor alpha 1 (cbfa1), collgen type I and osteonectin mRNAs. Lastly, hADSCs were cultured in the adipogenic media with or without simvastatin to examine the effect of simvastatin on adipogenic differentiation. In the RT-PCR analysis, there were notable decreases in mRNA expression of aP1, C/EBP-$\alpha$ and PPAR-$\gamma$ in hADSCs cultivated in simvastatin-added medium, compared to those in simvastatin-free medium. It suggests that the adipogenic differentiation was significantly inhibited by simvastatin treatment. These observations indicate that simvastatin induces osteogenic differentiation and suppresses adipogenic differentiation in hADSCs.