DOI QR코드

DOI QR Code

Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes

인체 섬유아세포 및 케라티노사이트에 대한 지방줄기세포 분비물의 세포생물학적 기능

  • Lee, Jae-Seol (Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control, Dong-Eui University)
  • 이재설 (동의대학교 바이오물질제어학과) ;
  • 이종환 (동의대학교 바이오물질제어학과)
  • Received : 2012.04.03
  • Accepted : 2012.06.09
  • Published : 2012.06.28

Abstract

The beneficial effects of adipose-derived stem cell conditioned media (ADSC-CM) for skin regeneration have previously been reported, despite the precise mechanism of how ADSC-CM promotes skin regeneration remaining unclear. ADSC-CM contains various secretomes and this may be a factor in it being a good resource for the treatment of skin conditions. It is also known that ADSC-CM produced in hypoxia conditions, in other words Advanced Adipose-Derived Stem cell Protein Extract (AAPE), has excellent skin regenerative properties. In this study, a human primary skin cell was devised to examine how AAPE affects human dermal fibroblast (HDF) and human keratinocyte (HK), which both play fundamental roles in skin regeneration. The promotion of collagen formation by HDFs was observed at 0.32 mg/ml of AAPE. AAPE treatment significantly stimulated stress fiber formation. DNA gene chips demonstrated that AAPE in HKs (p<0.05) affected the expression of 133 identifiable transcripts, which were associated with cell proliferation, migration, cell adhesion, and response to wounding. Twenty five identified proteins, including MMP, growth factor and cytokines such as CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, and MMP-19, were contained in AAPE via antibody arrays. Thus, AAPE might activate the HK biological function and induce the collagen synthesis of HDF. These results demonstrate that AAPE has the potential to be used for clinic applications aimed at skin regeneration.

피부재생에 대한 지방줄기세포 배양상등액(ADSC-CM)의 효능에 대한 연구를 진행하였다. ADSC-CM이 피부재생에 기여하는 기작은 명확하지 못하지만, ADSC-CM은 다양한 분비물을 포함하고 있고 따라서 피부트러블 처리를 위한 훌륭한 재료이다. 저 산소 상태에서 생산된 ADSC-CM, 즉 advanced adipose-derived stem cell protein extract (AAPE)는 피부재생에 보다 좋은 재료이다. 본 연구는 피부 재생에 결정적 역할을 하는 인체 primary 세포인 섬유아세포(HDF)와 케라티노사이트(HK)를 이용하여 AAPE의 효능을 검증하였다. 0.32 ${\mu}g/ml$ AAPE에서 콜라겐 합성이 관찰 되었으며 AAPE는 stress fiber 형성을 강화하였다. DNA microarray 결과에서는 세포증식, 세포이동, 세포부착, 상처반응에 관여하는 133개의 유전자 발현이 조절되는 것을 알았다. Antibody array를 통해 CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, 그리고 MMP-19와 같은 MMP, 성장인자, 사이토카인등 25개의 알려진 단백질이 포함되어 있다는 것을 알았다. 따라서, AAPE는 HK의 세포생물학적 기능을 활성화 할 수 있다고 사료되며 HDF에서는 콜라겐 합성을 유도하였다. 이러한 결과는 AAPE가 피부재생에 임상적 적용이 가능하리라는 것을 의미한다.

Keywords

References

  1. Adams, J. C. 1995. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: Implications for the anti-adhesive activities of thrombospondin-1. J. Cell Sci. 108: 1977-1990.
  2. Bandyopadhyay, B., J. Fan, S. Guan, Y. Li, M. Chen, D. T. Woodley, and W. Li. 2006. A "traffic control" role for TGFbeta3: Orchestrating dermal and epidermal cell motility during wound healing. J. Cell Biol. 172: 1093-1105. https://doi.org/10.1083/jcb.200507111
  3. Bevan, D., E. Gherardi, T. P. Fan, D. Edwards, and R. Warn. 2004. Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203: 831-838. https://doi.org/10.1002/path.1578
  4. Chen, B., A. Li, D. Wang, M. Wang, L. Zheng, and J. R. Bartles. 1999. Espin contains an additional actin-binding site in its N terminus and is a major actin-bundling protein of the sertoli cell-spermatid ectoplasmic specialization junctional plaque. Mol. Biol. Cell 10: 4327-4339. https://doi.org/10.1091/mbc.10.12.4327
  5. Dong, G., T. L. Lee, N. T. Yeh, J. Geoghegan, C. Van Waes, and Z. Chen. 2004. Metastatic squamous cell carcinoma cells that overexpress c-Met exhibit enhanced angiogenesis factor expression, scattering and metastasis in response to hepatocyte growth factor. Oncogene 23: 6199-6208. https://doi.org/10.1038/sj.onc.1207851
  6. Cramer, L. P., M. Siebert, and T. J. Mitchison. 1997. Identification of novel graded polarity actin filament Bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136: 1287-1305. https://doi.org/10.1083/jcb.136.6.1287
  7. Efimenko, A., E. E. Starostina, K. A. Rubina, N. I. Kalinina, and E. V. Parfenova. 2010. Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia 52: 144-154.
  8. Gallucci, R. M., D. K. Sloan, J. M. Heck, A. R. Murray, and S. J. O'Dell. 2004. Interleukin 6 indirectly induces HK migration. J. Invest. Dermatol. 122: 764-772. https://doi.org/10.1111/j.0022-202X.2004.22323.x
  9. Huber, K. 2001. Plasminogen activator inhibitor type-1 (part one): Basic mechanisms, regulation, and role for thromboembolic disease. J. Thromb. Thrombolys 11: 183-193. https://doi.org/10.1023/A:1011955018052
  10. Igarashi, A., H. Okochi, D. M. Bradham, and G. R. Grotendorst. 1993. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol. Biol. Cell 4: 637-645. https://doi.org/10.1091/mbc.4.6.637
  11. Kim, W. S., B. S. Park, H. K. Kim, J. S. Park, K. J. Kim, J. S. Choi, S. J. Chung, D. D. Kim, and J. H. Sung. 2008. Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. J. Dermatol. Sci. 49: 133-142. https://doi.org/10.1016/j.jdermsci.2007.08.004
  12. Kim, W. S., B. S. Park, and J. H. Sung. 2009. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch. Dermatol. Res. 301: 329-336. https://doi.org/10.1007/s00403-009-0951-9
  13. Kim, W. S., B. S. Park, J. H. Sung, J. M. Yang, S. B. Park, S. J. Kwak, and J. S. Park. 2007. Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48: 15-24. https://doi.org/10.1016/j.jdermsci.2007.05.018
  14. Mann, A., K. Breuhahn, P. Schirmacher, and M. Blessing. 2001. HK-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of HK proliferation, granulation tissue formation, and vascularization. J. Invest. Dermatol. 117: 1382-1390. https://doi.org/10.1046/j.0022-202x.2001.01600.x
  15. Mansbridge, J. 2008. Skin tissue engineering. J. Biomater. Sci. Polym. Ed. 19: 955-968. https://doi.org/10.1163/156856208784909417
  16. Nobes, C. D., and A. Hall. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144: 1235-1244. https://doi.org/10.1083/jcb.144.6.1235
  17. Nolte, S.V., and W. Xu, H. O. Rennekampff, and H. P. Rodemann. 2008. Diversity of fibroblasts a review on implications for skin tissue engineering. Cells Tissues Organs 187: 165-176. https://doi.org/10.1159/000111805
  18. Ren, H., Y. Cao, Q. Zhao, J. Li, C. Zhou, L. Liao, M. Jia, Q. Zhao, H. Cai, Z. C. Han, Q. Zhao, R. Yang, G. Chen, and R. C. Zhao. 2006. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem. Biophys. Res. Commun. 347: 12-21. https://doi.org/10.1016/j.bbrc.2006.05.169
  19. Rid, R., N. Schiefermeier, I. Grigoriev, J. V. Small, and I. Kaverina. 2005. The last but not the least: The origin and significance of trailing adhesions in fibroblastic cells. Cell Motil. Cytoskeleton 61: 161-171. https://doi.org/10.1002/cm.20076
  20. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. 2003. Cell migration: Integrating signals from front to back. Science 302: 1704-1709. https://doi.org/10.1126/science.1092053
  21. Peura, M., J. Bizik, P. Salmenpera, A. Noro, M. Korhonen, T. Patila, A. Vento, A. Vaheri, A.; Alitalo, R.; Vuola, J. A. Harjula, and E. Kankuri. 2009. Bone marrow mesenchymal stem cells undergo nemosis and induce HK wound healing utilizing the HGF/c-Met/PI3K pathway. Wound Repair Regen. 17: 569-577. https://doi.org/10.1111/j.1524-475X.2009.00507.x
  22. Shephard, P., G. Martin, S. Smola-Hess, G. Brunner, T. Krieg, and H. Smola. 2004. Myofibroblast differentiation is induced in HK-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor beta and interleukin-1. Am. J. Pathol. 164: 2055-2066. https://doi.org/10.1016/S0002-9440(10)63764-9
  23. Sato, M., D. Sawamura, S. Ina, T. Yaguchi, K. Hanada, and I. Hashimoto. 1999. In vivo introduction of the interleukin 6 gene into human HKs: Induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch. Dermatol. Res. 291: 400-404. https://doi.org/10.1007/s004030050429
  24. Wang, K., J. F. Ash, and S. J. Singer. 1975. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc. Natl. Acad. Sci. USA 72: 4483-4486. https://doi.org/10.1073/pnas.72.11.4483
  25. Werner, S. T. Krieg, and H. Smola. 2007. HK-fibroblast interactions in wound healing. J. Invest. Dermatol. 127: 998-1008. https://doi.org/10.1038/sj.jid.5700786
  26. Wright, C. S., M. A. Van Steensel, M. B. Hodgins, and P. E. Martin. 2009. Connexin mimetic peptidesimprove cell migration rates of human epidermal HKs and dermal fibroblasts in vitro. Wound Repair Regen. 17: 240-249. https://doi.org/10.1111/j.1524-475X.2009.00471.x
  27. Xia, W., T. T. Phan, I. J. Lim, M. T. Longaker, and G. P. Yang. 2004. Complex epithelial-mesenchymal interactions modulate transforming growth factor-beta expression in keloid-derived cells. Wound Repair Regen. 12: 546-556. https://doi.org/10.1111/j.1067-1927.2004.012507.x
  28. Zhang, L., M. Deng, R. Parthasarathy, L. Wang, M. Mongan, J. D. Molkentin, Y. Zheng, Y. Xia. 2005. MEKK1 transduces activin signals in HKs to induce an actin stress fiber formation and migration. Mol. Cell Biol. 25: 60-65. https://doi.org/10.1128/MCB.25.1.60-65.2005