• Title/Summary/Keyword: Adiabatic circuit

Search Result 15, Processing Time 0.026 seconds

Optimized Design of Low-power Adiabatic Dynamic CMOS Logic Digital 3-bit PWM for SSL Dimming System

  • Cho, Seung-Il;Mizunuma, Mitsuru;Yokoyama, Michio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • The size and power consumption of digital circuits including the dimming circuit part will increase for high-performance solid state lighting (SSL) systems in the future. This study examined the low-power consumption of adiabatic dynamic CMOS logic (ADCL) due to the principles of adiabatic charging. Furthermore, the designed low-power ADCL digital pulse width modulation (PWM) was optimized for SSL dimming systems. For this purpose, an ADCL digital 3-bit PWM was optimized in two steps. In the first step, the architecture of the ADCL digital 3-bit PWM was miniaturized. In the second step, the clock cut-off circuit was designed and added to the ADCL PWM. As a result, compared to the original configuration, 60 transistors and 15 capacitors of ADCL digital 3-bit PWM were reduced for miniaturization. Moreover, the clock cut-off circuit, which controls wake-up and sleep mode of ADCL D-FFs, was designed. The power consumption of an optimized ADCL digital PWM for all bit patterns decreased by 54 %.

  • PDF

A Low Power 16-Bit RISC Microprocessor Using ECRL Circuits

  • Shin, Young-Joon;Lee, Chan-Ho;Moon, Yong
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • This paper presents a low power 16-bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a $0.35{\mu}m$ CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four-phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non-adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.

  • PDF

Power Supply Circuits with Small size for Adiabatic Dynamic CMOS Logic Circuits

  • Sato, Masashi;Hashizume, Masaki;Yotuyanagi, Hiroyuki;Tamesada, Takeomi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.179-182
    • /
    • 2000
  • Adiabatic dynamic CMOS logic circuits, which are called ADCL circuits, promise us to implement low power logic circuits. Since the power supply source for ADCL circuits had not been developed, we proposed a power supply circuit for them. It is shown experimentally that by using the power supply circuit ADCL circuits can work with lower power consumption than conventional static CMOS circuit. In this paper, the power supply circuit is improved so that the power consumption can be reduced. Also, it is shown by some experiments that by using the circuit, ADCL circuits can work with lower power consumption than before Improving.

  • PDF

Design of Low-power Clock Generator Synchronized with the AC Power Source Using the ADCL Buffer for Adiabatic Logics (ADCL 버퍼를 이용한 단열 논리회로용 AC 전원과 동기화된 저전력 클럭 발생기 설계)

  • Cho, Seung-Il;Kim, Seong-Kweon;Harada, Tomochika;Yokoyama, Michio
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1301-1308
    • /
    • 2012
  • In this paper, the low-power clock generator synchronized with the AC power signal using the adiabatic dynamic CMOS logic (ADCL) buffer is proposed for adiabatic logics. To reduce the power dissipation in conventional CMOS logic and to maintain adiabatic charging and discharging with low power for the ADCL, the clock signal of logic circuits should be synchronized with the AC power source. The clock signal for an adiabatic charging and discharging with the AC power signal was generated with the designed Schmitt trigger circuit and ADCL frequency divider using the ADCL buffer. From the simulation result, the power consumption of the proposed clock generator was estimated with approximately 1.181uW and 37.42uW at output 3kHz and 10MHz respectively.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Symmetric Adiabatic Logic Circuits against Differential Power Analysis

  • Choi, Byong-Deok;Kim, Kyung-Eun;Chung, Ki-Seok;Kim, Dong-Kyue
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.166-168
    • /
    • 2010
  • We investigate the possibility of using adiabatic logic as a countermeasure against differential power analysis (DPA) style attacks to make use of its energy efficiency. Like other dual-rail logics, adiabatic logic exhibits a current dependence on input data, which makes the system vulnerable to DPA. To resolve this issue, we propose a symmetric adiabatic logic in which the discharge paths are symmetric for data-independent parasitic capacitance, and the charges are shared between the output nodes and between the internal nodes, respectively, to prevent the circuit from depending on the previous input data.

Sub-One volt DC Power Supply Expandable 4-bit Adder/Subtracter System using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Takahashi, Kazukiyo;Yokoyama, Michio;Shouno, Kazuhiro;Mizunuma, Mitsuru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1543-1546
    • /
    • 2002
  • The expandable 4 bit adder/subtracter IC was designed using the adiabatic and dynamic CMOS logic (ADCL) circuit as the ultra-low power consumption basic logic circuit and the IC was fabricated using a standard 1.2 ${\mu}$ CMOS process. As the result the steady operation of 4 bit addition and subtraction has been confirmed even if the frequency of the sinusoidal supply voltage is higher than 10MHz. Additionally, by the simulation, at the frequency of 10MHz, energy consumption per operation is obtained as 93.67pJ (ar addition and as 118.67pJ for subtraction, respectively. Each energy is about 1110 in comparison with the case in which the conventional CMOS logic circuit is used. A simple and low power oscillation circuit is also proposed as the power supply circuit f3r the ADCL circuit. The oscillator operates with a less one volt of DC supply voltage and around one milli-watts power dissipation.

  • PDF

An Ultra-Low Power Expandable 4-bit ALU IC using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Kazukiyo Takahashi;Hashimoto, Shin-ichi;Mitsuru Mizunuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.937-940
    • /
    • 2000
  • This paper describes expandable 4 bit ALU IC using adiabatic and dynamic CMOS circuit technique. It was designed so that the integrated circuit may have the function which is equivalent to HC181 which is CMOS standard logic IC for the comparison, and it was fabricated using a standard 1.2${\mu}$ CMOS process. As the result, the IC has shown that it operates perfectly on all function modes. The power dissipation is 2 order lower than that of HC 181.

  • PDF

Study on Low Power LED Display Operation (LED 디스플레이의 저전력화 동작 연구)

  • Lee, Kyung-Ryang;Kim, Jong-Un;Yeo, Sung-Dae;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.587-592
    • /
    • 2015
  • According to increase in the use of the LED, the demand for low power consumption LED display design of the controller block has increased. In this paper, the low power LED controller block was designed through the power source supply that leads adiabatic operation from constant current source circuit operated by digital signal control. The proposed circuit was implemented using a 0.35um CMOS process. and it demonstrated linear operation of the circuit. From the simulation result, the proposed circuit was evaluated with about 82% power consumption reduction effect in comparison with conventional LED controller block. This research is expected to be helpful for the low power operation and the solution for heat problem of LED display.

A 1bit Carry Propagate Free Adder/Subtracter VLSI Using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Takahashi, Yasuhiro;Yokoyama, Michio;Shouno, Kazuhiro;Mizumuma, Mitsuru;Takahashi, Kazukiyo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.349-352
    • /
    • 2002
  • This paper describes a design of a 1bit Carry Propagate Free Adder/Subtracter (CPFA/S) VLSI using the Adiabatic Dynamic CMOS Logic (ADCL) circuit technology. Using a PSPICE simulator, energy dissipation of the ADCL 1bit CPFA/S is compared with that of the CMOS 1bit CPFA/S. As a result, energy dissipation of the proposed ADCL circuits is about 1/23 as low as that of the CMOS circuits. The transistors count, propagation-delay tittle and energy dissipation of the ADCL 4bit CPFA/S are compared with those of the ADCL 4bit Carry Propagate Adder/Subtracter (CPA/S). The transistors count and propagation-delay tittle are found to be reduced by 7.02% and 57.1%, respectively. Also, energy dissipation is found to be reduced by 78.4%. Circuit operation and performance are evaluated using a chain of the ADCL 1bit CPFA/S fabricated in a $1.21mutextrm{m}$ CMOS process. The experimental results show that addition and subtraction are operated with clock frequencies up to about 1㎒.

  • PDF