• Title/Summary/Keyword: Adhesion performance

Search Result 627, Processing Time 0.037 seconds

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

Experimental Study on the Development of EMP Shielded Concrete Using Industrial By-products (산업부산물을 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Roh, Jeong-Heon;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.477-484
    • /
    • 2019
  • The purpose of this study is to present basic data for developing concrete with EMP shielding as the structure materials when constructing an EMP shielded building structure. In order to use metal-based recycled aggregates with excellent conductivity and easy procurement for EMP shielding concrete, an evaluation of the stability evaluation and EMP shielding performance was performed. Through the stability evaluation, it was found that the coarse aggregate stability criterion was satisfied, but the oxidized slag did not satisfy the fine aggregate stability criterion, the oxidized slag is not satisfied. In addition, as a result of fresh concrete, the workability is increased and the air volume is decreased. The compressive strength is increased due to the high density and coarse granularity of the recycled aggregates, which increased the cement paste and adhesion, thereby increasing the compressive strength. The results of an EMP shielding test show that aggregates with high shielding performance are electronic arc furnace(EAF) Oxidizing Slag and Cooper Slag. The shielding performance is expected to increase if the average particle size of aggregate is small or uniformly distributed.

Estimation of Bond Performance Improvement by Surface Treatment Equipments and Polymer Content by Boned Concrete Overlays (접착식 콘크리트 덧씌우기 경계면 처리 방식 및 폴리머 혼입률에 따른 부착성능 평가)

  • Jung, Won Kyong;Kim, Hyun Seok;Kwon, Oh Seon;Kim, Hyung Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Repair methods of aging concrete pavement are generally used composite structure pavements, such a composite structure is subjected to a large impact on the mechanical behavior and ensure long-term commonality integrated under vehicle loads, environmental loads of the public in accordance with the bond strength between old and new concrete. A common of bonded concrete overlays that are currently available is Interface arrangements using a variety of equipment to ensure the excellent bond strength between old and new concrete than standard concrete, mixed with a material such as a polymer in order to improve the adhesion with the material itself. However, these method of constructions are being applied, depending on the developer site presents no special specifications apply when a specific application criteria objectively, this is due to the situation of each individual method, which is based on the difficulty in quality control of the site manager. In this study by performing a field test for polymer content via the variables that contribute most significantly to ensure bond strength and the field element core of the interface processing method and materials to ensure bond strength between the old and the new concrete, it was to derive the construction site construction method that can improve the performance of the bond strength through a review of the construction around the correlations and the bond strength according to the effective performance analysis of the conventional surface treatment process and variation of polymer volume fraction.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Consumer Awareness Analysis of Residential Building Underground Structure Leakage Prevention Measurements (공동주택 지하공간 누수 예방 기술 정책 수립을 위한 소비자 인식 분석 연구)

  • Han, Yoon-Jung;Oh, Kyu-Hwan;Kim, Su-Ryon;Kim, Byoung-Il;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.379-387
    • /
    • 2016
  • In this study, a survey was conducted on the required measurement and waterproofing performance for residential building underground structure leakage prevention system. According to the results of the survey, it has been determined that leakage problem is considered to be quite severe, and many respondents have agreed. The legal guidelines and regulation systems do not reflect properly on the environmental requirements or conditions, resulting in continued leakage problem. In regards to this, a standardized waterproofing technique that can be used in underground areas of residential structures is required as an obligation and the development of high performance waterproofing method that allows for wet concrete surface adhesion and a guideline, design and maintenance method that allows the control of overall situational control of leakage is required.

Effect of a Bonding Layer between Electrodes on the Performance of a λ/4-Mode PVDF Ultrasound Transducer (λ/4 모드 PVDF 초음파 트랜스듀서에 있어서 전극 사이의 접합층이 성능에 미치는 영향)

  • Cao, Yonggang;Ha, Kanglyeol;Kim, Moojoon;Kim, Jungsoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • The effect of a bonding layer on the performance of a quarter-wave (${\lambda}/4$) mode PVDF ultrasound transducer having not only a piezoelectric layer but also a non-piezoelectric layer between two electrodes was analyzed. The equivalent circuit of a transmission line model by Kikuchi et al.[Sound of IEICE, 55-A, 331-338 (1981)] was introduced for the analysis. The validity of the model was confirmed by comparison with a KLM model for three postulated adhesion cases of a $80{\mu}m$ thick piezoelectric PVDF film to a copper (Cu) backer. The pulse-echo responses of five PVDF transducers, each fabricated with a different thickness ($5{\mu}m{\sim}20{\mu}m$) of the bonding layer, were measured and the results were compared with those by simulation. The two results were in good agreement with each other and it was noted that the effect of the bonding layer on the performance of the transducer could be analyzed by the Kikuchi model. In detail, the $20{\mu}m$ bonding layer decreased the center frequency and the bandwidth by about 19.7 % and 25.0 %, respectively, and increased the insertion loss by 57.2 %.

Evaluation on the Performance of Coating Materials for Improving the Durability of Concretes (콘크리트의 내구성 증진을 위한 코팅재의 성능 평가)

  • Kim, Sung-Soo;Choi, Choon-Sik;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.99-107
    • /
    • 2003
  • Normally coating is used a method for protecting reinforced concrete. For this purpose, organic as well as inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2$, $SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, in organic coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. So, we developed coating material, WGS-Eco which was hybridized with polymer and cement based material to protect concrete structures and solve problems of organic coatings. This study was conducted an comparative evaluation on physical and durable performance of developed coating material and previously used coating materials. As a result, the performance of developed coating material was not inferior to organic coating materials. So, the developed coating material was considered as a suitable coating material which had advantages of inorganic and organic coatings for protecting concrete.

Stage specific transcriptome analysis of liver tissue from a crossbred Korean Native Pig (KNP × Yorkshire)

  • Kumar, Himansu;Srikanth, Krishnamoorthy;Park, Woncheol;Lee, Kyung-Tai;Choi, Bong-Hwan;Kim, Jun-Mo;Lim, Dajeong;Park, Jong-Eun
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2018
  • Korean Native Pig (KNP) has a uniform black coat color, excellent meat quality, white colored fat, solid fat structure and good marbling. However, its growth performance is low, while the western origin Yorkshire pig has high growth performance. To take advantage of the unique performance of the two pig breeds, we raised crossbreeds (KNP ${\times}$ Yorkshire to make use of the heterotic effect. We then analyzed the liver transcriptome as it plays an important role in fat metabolism. We sampled at two stages: 10 weeks and at 26 weeks. The stages were chosen to correspond to the change in feeding system. A total of 16 pigs (8 from each stage) were sampled and RNA sequencing was performed. The reads were mapped to the reference genome and differential expression analysis was performed with edgeR package. A total of 324 genes were found to be significantly differentially expressed (${\left|log2FC\right|}$ > 1 & q < 0.01), out of which 180 genes were up-regulated and 144 genes were down-regulated. Principal Component Analysis (PCA) showed that the samples clustered according to stages. Functional annotation of significant DEGs (differentially expressed genes) showed that GO terms such as DNA replication, cell division, protein phosphorylation, regulation of signal transduction by p53 class mediator, ribosome, focal adhesion, DNA helicase activity, protein kinase activity etc. were enriched. KEGG pathway analysis showed that the DEGs functioned in cell cycle, Ras signaling pathway, p53 signaling pathway, MAPK signaling pathway etc. Twenty-nine transcripts were also part of the DEGs, these were predominantly Cys2His2-like fold group (C2H2) family of zinc fingers. A protein-protein interaction (PPI) network analysis showed that there were three highly interconnected clusters, suggesting an enrichment of genes with similar biological function. This study presents the first report of liver tissue specific gene regulation in a cross-bred Korean pig.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Compression Dynamic Performance of Glass Bubble/Epoxy Resin Adhesion (글라스버블/에폭시 수지 접착부의 극저온 압축 동적 성능)

  • Bae, Jin-Ho;Hwang, Byeong-Kwan;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Sloshing impact loads on liquefied natural gas (LNG) carr iers are the main issue of damage to the insulation system in LNG cargo containment system (LNG CCS). The damage to the insulation system would be fatal in maintaining a temperature-savings environment in LNG CCS. The typical method is to enhance the insulation materials that can maintain a constant cryogenic temperature. Insulation materials consist of polyurethane foam and plywood, an adhesive for bonding these two materials. This study intends to improve the absorption energy of the material when the impact load is applied by creating a glass bubble/epoxy composite resin as part of the insulation. The experimental scenarios consider the effect of temperature ($20^{\circ}C$, $-163^{\circ}C$), glass bubble weight fraction in epoxy resin through free fall experiments. Experiments have shown that if the glass bubble additive reaches 20 wt.%, the cryogenic absorption energy is a maximum performance and that 0 wt.% has a maximum ambient absorption energy. However, the agglomeration has been occurred due to deterioration of the stirring performance if weight fraction was 20 wt.% and the result of 0 wt.% have been revealed that ambient absorption energy is significantly lower.