• Title/Summary/Keyword: Adhesion molecule

Search Result 314, Processing Time 0.02 seconds

Analysis of Stromal Cells Developed from Cord Blood CD34+ Cells (제대혈 CD34+ 세포에서 유래된 지지세포의 분석)

  • Ryu, Kyung-Ha;Park, Se-Jin;Kim, Kyung Hyo;Seoh, Ju-Young;Khan, Mohammad;Shin, Hee-Young;Ahn, Hyo-Seop
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Background: Cytokine-mediated ex vivo expansion has been proposed as a means of increasing the number of cord blood (CB) hematopoietic stem cells for transplantation. As well as stem cell number, stromal cells are necessary for functional maturation of hematopoiesis. The purpose of this study was to analyze the development of stromal cells during ex vivo expansion of CB $CD34^+$ cells. Methods : $CD34^+$ cells were purified from CB by magnetic bead selection. The levels of of interleukin-3, interleukin-$1{\beta}$, interleukin-6, granulocyte macrophagecolony stimulating factor and tumor necrosis factor-${\alpha}$ were measured in culture supernatants on 0, 1, 2, and 3 weeks, using ELISA techniques. CB $CD34^+$ cells were expanded in Iscoves modified Dulbeccos medium in the presence of several cytokines. The expression of E-selectin, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet/endothelial cell adhesion molecule-1, von Willebrand factor, vimentin, and CD14 in newly developed stromal cells was examined by immunocytochemical method. Relevant extracellular matrix (ECM) proteins and proper cytokines were also assayed for the most suitable condition for expansion of stromal cells. Results: Several cytokines were found to have been produced by CB $CD34^+$ cells as well as bone marrow-derived $CD34^+$ cells. During ex vivo expansion of CB $CD34^+$ cells, stromal cells appeared in the culture by day 4 and expanded over the following 7-10 days before being confluent by day 2 1. These cells expressed surface markers characteristic of cells of endothelial lineage. Furthermore, these stroaml cells also expanded effectively when treated with thrombopoietin+flt-3 ligand+stem cell factor+leukemia inhibitory factor or 0.1% poly-L-lysine-coated wells. Conclusion: Stromal cells were developed during ex vivo expansion of CB $CD34^+$ cells and that this development could be enhanced further by treating the stromal cells with cytokines or ECM.

  • PDF

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

Chronic Treatment of Fluoxetine Increases Expression of NCAM140 in the Rat Hippocampus (장기간 플루세틴 처리에 의한 흰쥐 해마에서의 NCAM140 유전자 발현의 증가)

  • Choi, Mi Ran;Chai, Young Gyu;Jung, Kyoung Hwa;Baik, Seung Youn;Kim, Seok Hyeon;Roh, Sungwon;Choi, Joonho;Lee, Jun-Seok;Choi, Ihn Geun;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • Objectives : Most of the mechanisms reported for antidepressant drugs are the enhancement of neurite outgrowth and neuronal survival in the rat hippocampus. Neural cell adhesion molecule 140(NCAM140) has been implicated as having a role in cell-cell adhesion, neurite outgrowth, and synaptic plasticity. In this report, we have performed to elucidate a correlation among chronic antidepressant treatments, NCAM140 expression, and activation of phosphorylated cyclicAMP responsive element binding protein(pCREB) which is a downstream molecule of NCAM140-mediated intracellular signaling pathway in the rat hippocampus. Methods : Fluoxetine(10mg/kg) was injected acutely(daily injection for 5days) or chronically(daily injection for 14days) in adult rats. RNA and protein were extracted from the rat hippocampus, respectively. Real-time RT-PCR was performed to analyze the expression pattern of NCAM140 gene and western blot analyses for the activation of the phosphorylation ratio of CREB. Results : Chronic fluoxetine treatments increased NCAM140 expression 1.3 times higher than control in rat hippocampus. pCREB immunoreactivity in the rat hippocampus with chronic fluoxetine treatment was increased 4.0 times higher than that of control. Conclusion : Chronic fluoxetine treatment increased NCAM140 expression and pCREB activity in the rat hippocampus. Our data suggest that NCAM140 and pCREB may play a role in the clinical efficacy of antidepressants promoting the neurite outgrowth and neuronal survival.

  • PDF

Inhibitory Effect of Combination with Korean Red Gnseng and Morus Alba in High Fructose-induced Vascular Inflammation and Steatohepatitis (고과당식이 투여 랫드모델에서 홍삼과 상엽 복합투여에 대한 혈관염증 및 지방간염 억제 효과)

  • Lee, Yun Jung;Yoon, Jung Joo;Lee, So Min;Kho, Min Chul;Kim, Hye Yoom;Ahn, You Mee;Kho, Joung Hyun;Lee, Kee Byoung;Lee, Ho Sub;Choi, Kyung Min;Kwon, Tae Oh;Kang, Dae Gill
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.724-731
    • /
    • 2012
  • This study was designed to elucidate whether combination with Korean red ginseng and Morus alba L. (MPM), traditional treatment for diabetes, ameliorates on high fructose-induced steatohepatitis and vascular inflammation. Animals were divided into four groups; Control receiving tap water, fructose-fed, rosiglitazone-treated fructose-fed rats, and MPM-treated fructose-fed rats both receiving supplemented with 60% fructose (n=10). The MPM or rosiglitazone groups initially received a high-fructose diet alone for 8 weeks, with supplementation with MPM or rosiglitazone, peroxisome proliferators-activated receptor gamma ($PPAR{\gamma}$) agonist, occurring during the final 6 weeks. Treatment with MPM significantly prevented the increase in c-reactive protein (CRP) levels in the high fructose group. MPM suppressed high fructose diet-induced vascular inflammation marker expression such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. MPM also reduced intima/media thickness of thoracic aorta. Histologic observation and oil red O staining demonstrated hepatic tissue damage and lipid accumulation were severe in high fructose group. Treatment with MPM ameliorated hepatic tissue morphology with minimized steatosis. In addition, MPM attenuated hepatitis by inhibition of monocyte chemoattractant protein-1 (MCP-1) expression. MPM-fed group showed lower serum GOT and GPT levels comparing with high fructose group. MPM and rosiglitazone (positive control) significantly decreased the size of epididymal adipocytes. Taken together, the administration of MPM inhibited high fructose-induced steatohepatitis and vascular inflammation. These results suggested that MPM is useful in the prevention or treatment of metabolic syndrome-related disorders such as fatty acid metabolism and vascular homeostasis.

In vitro Study of the Antagonistic Effect of Low-dose Liquiritigenin on Gemcitabine-induced Capillary Leak Syndrome in Pancreatic Adenocarcinoma via Inhibiting ROS-Mediated Signalling Pathways

  • Wu, Wei;Xia, Qing;Luo, Rui-Jie;Lin, Zi-Qi;Xue, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4369-4376
    • /
    • 2015
  • Background: To investigate in-vitro antagonistic effect of low-dose liquiritigenin on gemcitabine-induced capillary leak syndrome (CLS) in pancreatic adenocarcinoma via inhibiting reactive oxygen species (ROS)-mediated signalling pathways. Materials and Methods: Human pancreatic adenocarcinoma Panc-1 cells and human umbilical vein endothelial cells (HUVECs) were pre-treated using low-dose liquiritigenin for 24 h, then added into gemcitabine and incubated for 48 h. Cell viability, apoptosis rate and ROS levels of Panc-1 cells and HUVECs were respectively detected through methylthiazolyldiphenyl-tetrazoliumbromide (MTT) and flow cytometry. For HUVECs, transendothelial electrical resistance (TEER) and transcellular and paracellular leak were measured using transwell assays, then poly (ADP-ribose) polymerase 1 (PARP-1) and metal matrix proteinase-9 (MMP9) activity were assayed via kits, mRNA expressions of p53 and Rac-1 were determined through quantitative polymerase chain reaction (qPCR); The expressions of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and PARP-1 were measured via western blotting. Results: Low-dose liquiritigenin exerted no effect on gemcitabine-induced changes of cell viability, apoptosis rate and ROS levels in Panc-1 cells, but for HUVECs, liquiritigenin ($3{\mu}M$) could remarkably elevate gemcitabine-induced decrease of cell viability, transepithelial electrical resistance (TEER), pro-MMP9 level and expression of ICAM-1 and VCAM-1 (p<0.01). Meanwhile, it could also significantly decrease gemcitabine-induced increase of transcellular and paracellular leak, ROS level, PARP-1 activity, Act-MMP9 level, mRNA expressions of p53 and Rac-1, expression of PARP-1 and apoptosis rate (p<0.01). Conclusions: Low-dose liquiritigenin exerts an antagonistic effect on gemcitabine-induced leak across HUVECs via inhibiting ROS-mediated signalling pathways, but without affecting gemcitabine-induced Panc-1 cell apoptosis. Therefore, low-dose liquiritigenin might be beneficial to prevent the occurrence of gemcitabine-induced CLS in pancreatic adenocarcinoma.

Functional Analysis of Fibroblastic Reticular Cells Derived from Mouse Lymph Node via Bidirectional Crosstalk with T Cells (T세포와 양방향 작용을 통한 마우스 림프절로부터 분리된 fibroblastic reticular cell의 기능적 분석)

  • Park, Sung Hee;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1199-1208
    • /
    • 2013
  • Fibroblastic reticular cells (FRCs) form the structural backbone of the T zone provide a guidance path for immigrating T cells in the lymph node (LN). FRCs may contribute directly to developing T-cell biology in the LN and allow analyses of fundamental aspects of FRC biology related to T cells. FRCs inhibited T-cell apoptosis, and FRC culture supernatants strongly induced the expression of Bcl-xL in T cells against doxorubicin. Coculture of FRC and T cells resulted in rearrangements of the actin cytoskeleton, as well as global changes in the morphology of the FRCs. In addition, when cocultured, the T cells adhered to the FRC monolayer, and the membrane intercellular adhesion molecule (ICAM)-1 was slightly increased by day-dependent manner. In contrast, the expression of soluble ICAM-1 was dramatically increased in a day-dependent manner. Several chemokines, such as CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13, and ICAM-1, and MMPs were expressed in FRCs sensed by tumor necrosis factor (TNF) families. Nuclear factor kappa B ($NF{\kappa}B$)-RelA of the $NF{\kappa}B$ canonical pathway was translocated into FRC nuclear by $TNF{\alpha}$. In contrast, p52 proteolyzed from p100, a counterpart of RelB of the noncanonical $NF{\kappa}B$ pathway, accumulated in the peripheral FRC nucleus by agonistic anti-$LT{\beta}R$ antibody. In summary, we propose a model in which FRCs engage in bidirectional crosstalk to increase the efficiency of T-cell biology. This cooperative feedback loop may help to maintain tissue integrity and function during immune responses.

Expression of Tbr2 in the Hippocampus Following Pilocarpine-induced Status Epilepticus (Pilocarpine에 의한 경련중첩증 후 해마에서 Tbr2 발현에 관한 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1532-1540
    • /
    • 2013
  • T-box transcription factor 2 (Tbr2) is a member of the T-box family of transcription factors and it plays an important role in brain development, progenitor cell proliferation, and the modulation of differentiation and function in immune cells, such as CD8+ T cells and natural killer cells. This study aims to elucidate the involvement of Tbr2 in the pathophysiological events following pilocarpine-induced status epilepticus in mice. Status epilepticus resulted in prominent neuronal cell death in discrete brain regions, such as CA3, the hilus, and the piriform cortex. Interestingly, when the immunoreactivity of Tbr2 was examined two days after status epilepticus, it was transiently increased in CA3 and in the piriform cortex. Tbr2-positive cells in CA3 and the piriform cortex were double-labeled with CD11b, a marker of microglia and a subset of white blood cells, such as monocytes, CD8+ T cells, and natural killer cells. Moreover, the double-labeled cells with Tbr2 and CD11b showed amoeboid morphology, and this data indicates that Tbr2-expressing cells may be reactive microglia or infiltrating white blood cells. Furthermore, clustered Tbr2-positive cells were observed in the platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive blood vessels near the CA3 area, which suggests that Tbr2-positive cells may be infiltrating the white blood cells. Based on this data, this study is the first to indicate the involvement of Tbr2 in neuropathophysiology in status epilepticus.

The Effects of Diesel Exhaust Particulates and Particulate Matters on the ICAM-1 and VCAM-1 Expression in the Lung of Asthma-incuced Mouse (디젤분진 및 미세분진이 천식마우스의 폐조직에서 ICAM-1과 VCAM-1의 발현에 미치는 효과)

  • Li, Tian-Zhu;Lee, Soo-Jin;Jang, Yang-Ho;Lee, Jeong-Hak;Park, Se-Jong;Park, Jun-Hong;Chang, Byung-Joon;Lee, Jong-Hwan;Choe, Nong-Hoon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.396-401
    • /
    • 2007
  • This research investigated whether exposure of diesel exhaust particulate (DEP) and particulate metter (PM) effect on intercellular. adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression in asthma-induced Balb/c and IL-10 knock out (KO) mouse. Mouse was sensitized with intraperitoneal injection with ovalbumin, followed by challenges with intranasal ovalbumin. After induction of asthma mouse placed in the inhalation chamber and exposed to DEP and PM (10 $mg/m^3$). The evidences of pulmonary inflammation were assessed by immunohistochemical stain and westen blot against ICAM-1 and VCAM-1 in the lung tissue. In the immunohistochemical stain, positive reactions for ICAM-1 and VCAM-1 were much stronger in asthma-induced groups and asthma-induced group with DEP or PM than control groups. Although mild positive reactions were appeared in asthma-induced IL-10 KO mice groups, positive reactions were very strong in the asthma-induced group with DEP or PM. In Western blot, expression of VCAM-1 was increased in asthma-induced group with DEP or PM than asthma-induced groups. In the IL-10 KO mouse, ICAM-1 and VCAM-1 expression were increased in asthma-induced group with DEP or PM than asthma-induced groups. DEP and PM exposure have additive effects on the aggravation of inflammatory signs in the asthma-induced murine model. These results suggest that inhalation of DEP and PM in asthmatic patients may aggravate clinical symptoms.

Biological Function of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 6 for the Enhancement of Adipose-Derived Stem Cell Survival against Oxidative Stress (지방유래 줄기세포의 생존능 향상을 위한 CEACAM 6의 생물학적 기능에 대한 연구)

  • Koh, Eun-Young;You, Ji-Eun;Jung, Se-Hwa;Kim, Pyung-Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • The use of stem cells in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it has been applied to numerous incurable diseases due to the inherent abilities of self-renewal and differentiation. However, there still exist some severe obstacles, such as requirement of cell expansion before the treatment, and low survival at the treated site. To overcome these disadvantages of stem cells, we used the carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM 6) gene, which functions to increase cell-cell interaction as well as anti-apoptosis. We first confirmed whether CEACAM 6 is expressed in various cell lines at the protein level (including in stem cells), followed by evaluating and selecting the optimal transfection conditions into stem cells. The CEACAM 6 gene was transfected into stem cells to prolong cell survival and preserve from damage by oxidative stress. After confirming the CEACAM 6 expression in transfected stem cells, the cell survival was assessed under oxidative condition by exposing to hydrogen peroxide (H2O2) to mimic the chronic environment-induced cellular damage. CEACAM 6 expressing stem cells show increased cell viability compared to the non-CEACAM 6 expressing cells. We propose that the application of the CEACAM 6 gene is a potential option, capable of expanding and enhancing the therapeutic effects of stem cells.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.