DOI QR코드

DOI QR Code

Functional Analysis of Fibroblastic Reticular Cells Derived from Mouse Lymph Node via Bidirectional Crosstalk with T Cells

T세포와 양방향 작용을 통한 마우스 림프절로부터 분리된 fibroblastic reticular cell의 기능적 분석

  • Park, Sung Hee (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biotechnology and Bioengineering, Dong-Eui University)
  • Received : 2013.07.25
  • Accepted : 2013.10.01
  • Published : 2013.10.30

Abstract

Fibroblastic reticular cells (FRCs) form the structural backbone of the T zone provide a guidance path for immigrating T cells in the lymph node (LN). FRCs may contribute directly to developing T-cell biology in the LN and allow analyses of fundamental aspects of FRC biology related to T cells. FRCs inhibited T-cell apoptosis, and FRC culture supernatants strongly induced the expression of Bcl-xL in T cells against doxorubicin. Coculture of FRC and T cells resulted in rearrangements of the actin cytoskeleton, as well as global changes in the morphology of the FRCs. In addition, when cocultured, the T cells adhered to the FRC monolayer, and the membrane intercellular adhesion molecule (ICAM)-1 was slightly increased by day-dependent manner. In contrast, the expression of soluble ICAM-1 was dramatically increased in a day-dependent manner. Several chemokines, such as CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13, and ICAM-1, and MMPs were expressed in FRCs sensed by tumor necrosis factor (TNF) families. Nuclear factor kappa B ($NF{\kappa}B$)-RelA of the $NF{\kappa}B$ canonical pathway was translocated into FRC nuclear by $TNF{\alpha}$. In contrast, p52 proteolyzed from p100, a counterpart of RelB of the noncanonical $NF{\kappa}B$ pathway, accumulated in the peripheral FRC nucleus by agonistic anti-$LT{\beta}R$ antibody. In summary, we propose a model in which FRCs engage in bidirectional crosstalk to increase the efficiency of T-cell biology. This cooperative feedback loop may help to maintain tissue integrity and function during immune responses.

Fibroblastic reticular cells (FRC)는 림프절 T세포 지역에 구조적 골격 형성을 하며 유입 T 세포의 안내길을 제공한다. FRC는 림프절에서 T세포 생물학 발달에 기여한다. 따라서, 이것이 FRC와 T세포 사이에서 FRC의 세포생물학적 근본 기능을 알아보게 하였다. FRC 배양 상등액은 T세포 사멸을 저해하였다. FRC 상등액은 doxorubicin에 대하여 T세포에 Bcl-xL의 발현을 증가시켰다. FRC와 T세포의 공배양은 FRC의 액틴 골격의 변화와 형태적 변화를 유도하였다. 또한, FRC와 T세포의 공배양은 T 세포가 FRC 단일층에 부착하는 결과를 유도하였고 막결합형 intercellular adhesion molecule (ICAM)-1 단백질의 발현은 약간 증가한 반면 용해성 ICAM-1 (sICAM-1) 발현은 시간 의존적으로 드라마틱하게 증가하였다. FRC는 T세포에 의해 분비되는 tumor necrosis factor (TNF) 패밀리들에 의해 CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13와 같은 케모카인들과 ICAM-1 그리고 MMPs의 발현량을 증가시켰다. $TNF{\alpha}$가 FRC에 처리 되었을때 $NF{\kappa}B$ canonical pathway의 RelA는 핵으로 전좌 되었지만, agonistic anti-$LT{\beta}R$ antibody로 처리된 FRC에서 non-canonical $NF{\kappa}B$ pathway의 RelB의 카운터 파트너인 p100의 분해산물 p52는 핵주변부로 축적되었다. 결론적으로 FRC는 FRC와 T세포 양방향 협력을 통해 T세포 생물학적 기능을 증진한다. 이러한 상호협력 관계는 면역반응 동안 조직의 통합성과 기능을 유지하는데 도움을 줄 것으로 사료된다.

Keywords

References

  1. Anderson, A. O. and Anderson, N. D. 1975. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol 80, 387-418.
  2. Cory, A. H., Owen, T. C., Barltrop, J. A. and Cory, J. G. 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3, 207-212.
  3. Del Prete, A., Allavena, P., Santoro, G., Fumarulo, R., Corsi, M. M. and Mantovani, A. 2011. Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb) 21, 264-275.
  4. Gao, X., Deeb, D., Hao, J., Liu, Y., Arbab, A. S., Dulchavsky, S. A. and Gautam, S. C. 2010. Synthetic triterpenoids inhibit growth, induce apoptosis and suppress pro-survival Akt, mTOR and NF-{kappa}B signaling proteins in colorectal cancer cells. Anticancer Res 30, 785-792.
  5. Gommerman, J. L. and Browning, J. L. 2003. Lymphotoxin/LIGHT, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3, 642-655. https://doi.org/10.1038/nri1151
  6. Gretz, J. E., Anderson, A. O. and Shaw, S. 1997. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 156, 11-24. https://doi.org/10.1111/j.1600-065X.1997.tb00955.x
  7. Hara, T., Shitara, S., Imai, K., Miyachi, H., Kitano, S., Yao, H., Tani-Ichi, S. and Ikuta, K. 2012. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol 189, 1577-1584. https://doi.org/10.4049/jimmunol.1200586
  8. Hoffmann, A. and Baltimore, D. 2006. Circuitry of nuclear factor kappaB signaling. Immunol Rev 210, 171-186. https://doi.org/10.1111/j.0105-2896.2006.00375.x
  9. Hossain, M., Qadri, S. M., Su, Y. and Liu, L. 2013. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am J Physiol Cell Physiol 304, 895-904.
  10. Huang, H. Y. and Luther, S. A. 2012. Expression and function of interleukin-7 in secondary and tertiarylymphoidorgans. Sem Immunol 24, 175-189. https://doi.org/10.1016/j.smim.2012.02.008
  11. Kaldjian, E. P., Gretz, J. E., Anderson, A. O., Shi, Y. and Shaw, S. 2001. Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membranelike extracellular matrix. Int Immunol 13, 1243-1253. https://doi.org/10.1093/intimm/13.10.1243
  12. Katakai, T., Habiro, K. and Kinashi, T. 2013. Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J Immunol 191, 1188-1199. https://doi.org/10.4049/jimmunol.1300739
  13. Katakai, T., Hara, T., Lee, J. H., Gonda, H., Sugai, M. and Shimizu, A. 2004. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16, 1133-1142. https://doi.org/10.1093/intimm/dxh113
  14. Katakai, T., Hara, T., Sugai, M., Gonda, H. and Shimizu, A. 2004. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 200, 783-795. https://doi.org/10.1084/jem.20040254
  15. Lee, J. K., Won, C., Yi, E. H., Seok, S. H., Kim, M. H., Kim, S. J., Chung, M. H., Lee, H. G., Ikuta, K. and Ye, S. K. 2013. Stat3 contributes to T-cell homeostasis by regulating prosurvival Bcl-2 family genes. Immunology doi:10.1111/imm.12133.
  16. Lukacs-Kornek, V., Malhotra, D., Fletcher, A. L., Acton, S. E., Elpek, K. G., Tayalia, P., Collier, A. R. and Turley, S. J. 2011. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12, 1096-1104. https://doi.org/10.1038/ni.2112
  17. Malhotra, D., Fletcher, A. L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S. F., Elpek, K. G., Chang, S. K., Knoblich, K., Hemler, M. E., Brenner, M. B., Carroll, M. C., Mooney, D. J. and Turley, S. J. 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 13, 499-510.
  18. Malhotra, D., Fletcher, A. L. and Turley, S. J. 2013. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251, 160-176. https://doi.org/10.1111/imr.12023
  19. Maraskovsky, E., O'Reilly, L. A., Teepe, M., Corcoran, L. M., Peschon, J. J. and Strasser, A. 1997. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice. Cell 89, 1011-1019. https://doi.org/10.1016/S0092-8674(00)80289-5
  20. Mebius, R. E. 2003. Organogenesis of lymphoid tissues. Nat Rev Immunol 3, 292-303. https://doi.org/10.1038/nri1054
  21. Mueller, S. N. and Germain, R. N. 2009. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9, 618-629.
  22. Riss, T. L. and Moravec, R. A. 1992. Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell (Suppl.) 3, 184a.
  23. Roozendaal, R., Mebius, R. E. and Kraal, G. 2008. The conduit system of the lymph node. Int Immunol 20, 1483-1487. https://doi.org/10.1093/intimm/dxn110
  24. Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R., Lutz, M. B. and Sorokin, L. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19-29. https://doi.org/10.1016/j.immuni.2004.11.013
  25. Springer, T. A. and Dustin, M. L. 2012. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24, 107-115. https://doi.org/10.1016/j.ceb.2011.10.004
  26. Stanley, P., Tooze, S. and Hogg, N. 2012. A role for Rap2 in recycling the extended conformation of LFA-1 during T cell migration. Biol Open 1, 1161-1168. https://doi.org/10.1242/bio.20122824
  27. Thompson, W. L. and Van Eldik, L. J. 2009. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkBand MAPK dependent pathways in rat astrocytes [corrected]. Brain Res 1287, 47-57. https://doi.org/10.1016/j.brainres.2009.06.081
  28. Turley, S. J., Fletcher, A. L. and Elpek, K. G. 2010. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 10, 813-825. https://doi.org/10.1038/nri2886
  29. Wang, X., Cho, B., Suzuki, K., Xu, Y., Green, J. A., An, J. and Cyster, J. G. 2011. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208, 2497-2510. https://doi.org/10.1084/jem.20111449
  30. Weih, F. and Caamano, J. 2003. Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol Rev 195, 91-105. https://doi.org/10.1034/j.1600-065X.2003.00064.x
  31. Witkowska, A. M. and Borawska, M. H. 2004. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw 15, 91-98.