DOI QR코드

DOI QR Code

Biological Function of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 6 for the Enhancement of Adipose-Derived Stem Cell Survival against Oxidative Stress

지방유래 줄기세포의 생존능 향상을 위한 CEACAM 6의 생물학적 기능에 대한 연구

  • Koh, Eun-Young (Department of Biomedical Laboratory Science, Konyang University) ;
  • You, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University) ;
  • Jung, Se-Hwa (Department of Biomedical Laboratory Science, Konyang University) ;
  • Kim, Pyung-Hwan (Department of Biomedical Laboratory Science, Konyang University)
  • 고은영 (건양대학교 임상병리학과) ;
  • 유지은 (건양대학교 임상병리학과) ;
  • 정세화 (건양대학교 임상병리학과) ;
  • 김평환 (건양대학교 임상병리학과)
  • Received : 2019.10.18
  • Accepted : 2019.10.22
  • Published : 2019.12.31

Abstract

The use of stem cells in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it has been applied to numerous incurable diseases due to the inherent abilities of self-renewal and differentiation. However, there still exist some severe obstacles, such as requirement of cell expansion before the treatment, and low survival at the treated site. To overcome these disadvantages of stem cells, we used the carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM 6) gene, which functions to increase cell-cell interaction as well as anti-apoptosis. We first confirmed whether CEACAM 6 is expressed in various cell lines at the protein level (including in stem cells), followed by evaluating and selecting the optimal transfection conditions into stem cells. The CEACAM 6 gene was transfected into stem cells to prolong cell survival and preserve from damage by oxidative stress. After confirming the CEACAM 6 expression in transfected stem cells, the cell survival was assessed under oxidative condition by exposing to hydrogen peroxide (H2O2) to mimic the chronic environment-induced cellular damage. CEACAM 6 expressing stem cells show increased cell viability compared to the non-CEACAM 6 expressing cells. We propose that the application of the CEACAM 6 gene is a potential option, capable of expanding and enhancing the therapeutic effects of stem cells.

세포기반 치료제에 사용되는 줄기세포는 재생능력과 다양한 세포로의 분화능력으로 인해 재생 의학 분야에서 광범위하게 관심을 끌었으며, 많은 불치병에 적용된다. 하지만, 이러한 줄기세포는 여전히 치료 전 세포증식 및 질병 투여부위에서의 낮은 생존률로 인해 충분한 치료효과가 나타나지 않는 단점이 있다. 이것을 해결하고자, 우리는 세포부착능과 항세포자살 기능을 가지고 있는 carcinoembryonic antigen (CEA) gene family의 하나인 CEACAM 6를 사용하였다. 이것을 줄기세포에 적용 전, 먼저 세포별로 이 단백질이 발현되는지를 확인하였고, 이 유전자가 발현되는 벡터를 줄기세포에 삽입시키기 위한 최적 조건을 선정하였다. 그 후, 도입된 CEACAM 6발현벡터로부터 줄기세포에서 이 유전자가 발현되는지를 확인하였다. 그리고 인체투여 시 발생되는 산화적 스트레스와 유사한 조건에서의 이 유전자의 기능을 평가하기 위해 과산화수소(H2O2)를 처리하였다. 산화적 스트레스 조건하에서 CEACAM 6가 발현되는 줄기세포는 그렇지 않은 세포에 비해 세포의 생존률이 현저히 증가하는 것을 확인하였다. 이를 통해, 이 CEACAM 6는 줄기세포의 치료효능과 세포증식을 강화시킬 수 있는 다른 선택지로서의 가능성이 있음을 확인하였다.

Keywords

References

  1. Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18:292-297. https://doi.org/10.1016/j.molmed.2012.02.003.
  2. Henning RJ. Stem cells in cardiac repair. Future Cardiology. 2011;7:99-117. https://doi.org/10.2217/fca.10.109.
  3. Kim PH, Cho JY. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep. 2016;49:26-36. https://doi.org/10.5483/BMBRep.2016.49.1.165. PubMed PMID: 26497579.
  4. Mead B, Tomarev S. Evaluating retinal ganglion cell loss and dysfunction. Exp Eye Res. 2016;151:96-106. https://doi.org/10.1016/j.exer.2016.08.006.
  5. Kim PH, Na SS, Lee B, Kim JH, Cho JY. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Rep. 2015;48:702-707. https://doi.org/10.5483/bmbrep.2015.48.12.158.
  6. Baek K, Tu C, Zoldan J, Suggs LJ. Gene transfection for stem cell therapy. Current Stem Cell Reports. 2016;2:52-61. https://doi.org/10.1007/s40778-016-0029-5.
  7. Johnson B, Mahadevan D. Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin Cancer Drugs. 2015;2:100-111. https://doi.org/10.2174/2212697X02666150602215823.
  8. Kim CY, Hwang IK, Kang C, Chung EB, Jung CR, Oh H, et al. Improved transfection efficiency and metabolic activity in human embryonic stem cell using non-enzymatic method. Int J Stem Cells. 2018;11:149-156. https://doi.org/10.15283/ijsc18037.
  9. Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: role of stem cell "soup-ernatant". Biotechnol Appl Biochem. 2018;65:104-118.https://doi.org/10.1002/bab.1561.
  10. Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev. 2015;2015:632902. https://doi.org/10.1155/2015/632902.
  11. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373-386. https://doi.org/10.1016/j.cell.2017.11.010.
  12. Li Z, Hu X, Zhong JF. Mesenchymal stem cells: characteristics, function, and application. Stem Cells Int. 2019;2019:8106818. https://doi.org/10.1155/2019/8106818.
  13. Kratochvil MJ, Seymour AJ, Li TL, Pasca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nature Reviews Materials. 2019;4:606-622. https://doi.org/10.1038/s41578-019-0129-9.
  14. Monsel A, Zhu Y-G, Gennai S, Hao Q, Liu J, Lee JW. Cell-based therapy for acute organ injury. Anesthesiology. 2014;121:1099-1121. https://doi.org/10.1097/aln.0000000000000446.
  15. Swioklo S, Constantinescu A, Connon CJ. Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med. 2016;5:339-349. https://doi.org/10.5966/sctm.2015-0131.
  16. Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32:643-671.https://doi.org/10.1007/s10555-013-9444-6.
  17. Lin SE, Barrette AM, Chapin C, Gonzales LW, Gonzalez RF, Dobbs LG, et al. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice. Physiol Rep. 2015;3. pii: e12657. https://doi.org/10.14814/phy2.12657.
  18. Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 2005;65:8809-8817. https://doi.org/10.1158/0008-5472.CAN-05-0420.
  19. Rizeq B, Zakaria Z, Ouhtit A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci. 2018;109:33-42. https://doi.org/10.1111/cas.13437.
  20. Panczyszyn A, Wieczorek M. Role of CEACAM in neutrophil activation. Advances in hygiene and Experimental Medicine (Online). 2012;66:574-582. https://doi.org/10.5604/17322693.1008194.
  21. Gemei M, Mirabelli P, Di Noto R, Corbo C, Iaccarino A, Zamboli A, et al. CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer. 2013;119:729-738. https://doi.org/10.1002/cncr.27794.
  22. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41-51. https://doi.org/10.1016/j.semcdb.2015.02.010.
  23. Ganapathi M, Boles NC, Charniga C, Lotz S, Campbell M, Temple S, et al. Effect of bmi1 over-expression on gene expression in adult and embryonic murine neural stem cells. Scientific Reports. 2018;8:7464. https://doi.org/10.1038/s41598-018-25921-8.
  24. Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress and Chaperones. 2014;19:685-693. https://doi.org/10.1007/s12192-014-0496-5.
  25. Ogle B. Electroporation can efficiently transfect hESC-derived mesenchymal stem cells without inducing differentiation. The Open Stem Cell Journal. 2011;3:62-66. https://doi.org/10.2174/1876893801103010062.
  26. Rizk A, Rabie BM. Electroporation for transfection and differentiation of dental pulp stem cells. Biores Open Access. 2013;2:155-162. https://doi.org/10.1089/biores.2012.0273.
  27. Park E, Cho HB, Takimoto K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine. Cytotherapy. 2015;17:536-542. https://doi.org/10.1016/j.jcyt.2014.11.008.
  28. Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol. 2019. https://doi.org/10.1038/s41587-019-0137-8.
  29. Cho HM, Kim PH, Chang HK, Shen YM, Bonsra K, Kang BJ, et al. Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction. Stem Cells Transl Med. 2017;6:1040-1051. https://doi.org/10.1002/sctm.16-0114.
  30. Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381:1240-1247. https://doi.org/10.1056/NEJMoa1817426.
  31. Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23:907. https://doi.org/10.3390/molecules23040907.
  32. Tao J, Ding WF, Che XH, Chen YC, Chen F, Chen XD, et al. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics. Int J Mol Med. 2016;37:1345-1354. https://doi.org/10.3892/ijmm.2016.2530.
  33. Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390:198-207. https://doi.org/10.1016/j.ijpharm.2010.01.035.
  34. Ramamoorth M, Narvekar A. Non viral vectors in gene therapyan overview. J Clin Diagn Res. 2015;9:GE01-6. https://doi.org/10.7860/JCDR/2015/10443.5394.
  35. Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. Journal of Human Genetics. J Hum Genet. 2018;63:145-156. https://doi.org/10.1038/s10038-017-0378-7.
  36. Clement F, Grockowiak E, Zylbersztejn F, Fossard G, Gobert S, Maguer-Satta V. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 2017;4:67. https://doi.org/10.21037/sci.2017.07.03.

Cited by

  1. Antioxidant Effect of Annexin A-1 Induced by Low-dose Ionizing Radiation in Adipose-derived Stem Cells vol.26, pp.4, 2019, https://doi.org/10.15616/bsl.2020.26.4.249
  2. Conjugation‐Free Multilamellar Protein‐Lipid Hybrid Vesicles for Multifaceted Immune Responses vol.10, pp.22, 2019, https://doi.org/10.1002/adhm.202101239