• Title/Summary/Keyword: Addition reactions

Search Result 938, Processing Time 0.023 seconds

Organotitanium Chemistry (Ⅲ). The Reactions of Titanium Tetrachloride with Piperidine and Diphenylamine (유기티탄 화학 (제3보). 사염화티탄과 피페리딘 및 디페닐아민과의 반응)

  • Young Sun Uh;Hoosung Lee;Youn soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.408-414
    • /
    • 1974
  • The direct reactions of titanium tetrachloride with piperidine and diphenylamine in dichloromethane have been studied by examining the isolated reaction products. In the reaction with piperidine, titanium tetrachloride undergoes both addition and substitution reactions as in the following: $TiCl_4+C_5H_{10}NH{\to}TiCl_4{\cdot}C_5H_{10}NH$$TiCl_4+C_5H_{10}{\to}TiCl_3{\cdot}NC_5H_{10}+HCl$ The addition reaction is relatively fast and completed in minutes whereas the substitution reaction is very slow. The both reaction products coprecipitated with piperidine hydrochloride formed during the substitution reaction were isolated and characterized. The reaction with diphenylamine resembles to the above reaction but the addition compound could be obtained in pure crystal form.

  • PDF

Synthesis of Nucleophilic Adducts of thiols (VIII). Addition of Thioglycolic acid, Benzenethiol and Benzylmercaptan to ${\beta}$-Acetyl-${\beta}$-benzoylstyrene Derivatives (Thiol의 친핵성 첨가물의 합성 (제VIII보) ${\beta}$-Acetyl-${\beta}$-benzoylstyrene 유도체에 대한 thioglycolic acid, benzenethiol 및 benzylmercaptan 첨가 생성물의 합성)

  • Tae-Sung Huh;In-Sook Baek;Kih-Rim Seo;Tae-Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.364-368
    • /
    • 1987
  • The addition reactions of thioglycolic acid, benzenethiol and benzylmercaptan to ${\beta}-acetyl-{\beta}-benzoylstyrene$ were investigated. ${\beta}-Acetyl-{\beta}-benzoylstyrene$ derivatives easily underwent addition reactions with thioglycolic acid, benzenethiol, and benzylmercaptan to form five(2-acetyl-2-benzoyl-1-phenylethyl) thioglycolic acid derivatives (IIa-IIe), five (2-acetyl-2-benzoyl-1-phenylethyl)benzenethiol (IIIa-IIIe) derivatives and five (2-acetyl-2-benzoyl-1-phenylethyl)benzylmercaptan derivatives (IVa-IVe), respectively.

  • PDF

Reactions of Iron Alkynyl(Ethoxy)Carbene Complexes with Amines (철 알킨일(에톡시)카르벤 착물 유도체와 아민의 반응)

  • Park, Jaiwook;Kim, Jinkyung;Jung, Hyunmin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.571-578
    • /
    • 1996
  • Iron alkynyl(amino)carbene complexes, (${\beta}$-aminovinyl)carbene complexes, ${\eta}^3$-(2-(alkylcarbonyl)vinyl)carbene complexes, and a 3-aminoallenylidene complex were formed in the reactions of iron alkynyl(ethoxy)carbene complexes with amines. The ratio of the products, which were formed by substitution reaction, the Michael addition of amines, rearrangements after the addition reaction, and the addition followed by the elimination of the ethoxy group, respectively, was dependent on reaction temperature, the substituent of the alkynyl moiety, and employed amines.

  • PDF

Kinetic and Mechanism of the Addition of Benzylamines to α-Phenyl-β-thiophenylacrylonitriles in Acetonitrile

  • Hwang, Jae-young;Yang, Ki-yull;Koo, In-Sun;Sung, Dae-Dong;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.733-738
    • /
    • 2006
  • Nucleophilic addition reactions of p-substitutedbenzylamines $(XC _6H_4CH _2NH _2)$ to $\alpha$-phenyl-$\beta$-thiophenyl-acrylonitriles ($YC _4SH _2CH=C(CN)C_6H_4$Y') have been studied in acetonitrile at 25.0, 30.0, and 35.0 ${^{\circ}C}$. The reactions take place in single step in which the $C_\beta$ -N bond formation and proton transfer to $C_\alpha$ of $\alpha$-phenyl-$\beta$-thiophenylacrylonitriles occur concurrently with four-membered cyclic transition structure. These mechanistic conclusions are drawn based on (i) the large negative $\rho$x and large positive $\rho$Y' values and also large magnitude of $\rho$X, (ii) the negative sign and large magnitude of the cross-interaction constants ($\rho$XY), (iii) the normal kinetic isotope effects ($k_H/k_D$ > 1.0), and (iv) relatively low $\Delta H ^\neq$ and large negative $\Delta S ^\neq$ values.

Synthesis of Nucleophilic Adducts of Thiols (Ⅰ). Addition of Cysteine to $\beta$-Nitrostyrene Derivatives

  • Kim, Tae-Rin;Choi, Sung-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.125-129
    • /
    • 1981
  • The addition reactions of cysteine without blocking amino and carboxyl groups to substituted and unsubstituted ${\beta}$-nitro-styrene derivatives were investigated. ${\beta}$-Nitrostyrene(1a), p-methyl-${\beta}$-nitrostyrene(1b), 3,4,5-trimethoxy-$[\beta}$ -nitrostyrene(1c), $[\varpi}$-3,4-methylenedioxy-${\beta}$ -nitrostyrene(1d), o-, m- and p-chloro-${\beta}$ -nitrostyrene (1e, 1f, 1g) and o-, m- and p-methoxy-${\beta}$-nitrostyrene (1h, 1i, 1j) easily undergo addition reactions with cysteine to form S-(2-nitro-1-phenylethyl)-L-cysteine(3a), S-[2-nitro-1-(p-methyl)phenyl-ethyl]-L-cysteine(3b), S-[2-nitro-1-(3',4',5'-trimethoxy) phenylethyl]-L-cysteine(3c), S-[2-nitro-1-($[\vatpi}$ -3',4'-methylenedioxy)phenylethyl]-L-cysteine(3d), S-[2-nitro-1-(o-chloro)phenylethyl]-L-cysteine(3e), S-[2-nitro-1-(m-chloro)-phenylethyl]-L-cysteine(3f), S-[2-nitro-1-(p-chloro)phenylethyl]-L-cysteine(3g), S-[2-nitro-1-(o-methoxy)phenylethyl]-L-cysteine(3h), S-[2-nitro-1-(m-methoxy)phenylethyl]-L-cysteine(3i) and S-[2-nitro-1-(p-methoxy)phenylethyl]-L-cysteine(3j), respectively. The structure of adducts were confirmed by means of UV-spectrum, IR-spectrum, molecular weight measurement and elemental analysis. The various factors effecting the yield of cysteine adducts to ${\beta}$-nitrostyrene derivatives were also studied.

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Regioselective Addition Reactions of the Organoindium Reagents onto α,β-Unsaturated Ketones

  • Lee, Phil-Ho;Kim, Hyun;Lee, Koo-Yeon;Seomoon, Dong;Kim, Sun-Dae;Kim, Hee-Chul;Kim, Hyun-Seok;Lee, Mi-Ae;Shim, Eun-Kyong;Lee, Seok-Ju;Kim, Mi-Sook;Han, Mi-Jeong;Noh, Kwang-Hyun;Sridhar, Madabhushi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1687-1691
    • /
    • 2004
  • Regioselectivity on the reactions of ${\alpha},{\beta}$--enones with organoindium such as in situ generated allylindium and allenylindium was systematically studied in the presence of TMSCl as an additive. Treatment of 2-cyclohexen-1-one, carvone, 2-cyclohepten-1-one, and chalcone with allylindium reagent produced 1,4-addition products in good yields, while 2-cyclopenten-1-one, 2-methyl-2-cyclopenten-1-one, 4,4-dimethylcyclohexen-1-one, 3-nonen-2-one, 4-hexen-3-one, and 4-phenyl-3-buten-2-one afforded 1,2-addition products. Indium reagent derived from indium and propargyl bromide in Grignard type gave addition products in good yields, under which the successive addition of ${\alpha},{\beta}$-enone and TMSCl were necessary. Although organoindium reagent derived from propargyl bromide produced propargylated compound in Grignard type except 2-cyclohepten-1-one, indium reagent obtained from 1-bromo-2-butyne having ${\gamma}$-methyl group gave allenylated product inBarbier type.

Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients

  • Yi, Ji Hyun;Cho, Yang-Je;Kim, Won-Joo;Lee, Min Goo;Lee, Ji Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.254-262
    • /
    • 2013
  • The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p=0.0057) and the GG genotype (61.0% vs. 39.7%, p=0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p=0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

A Mechanistic Study on Reactions of Aryl Benzoates with Ethoxide, Aryloxides and Acetophenone oximates in Absolute Ethanol

  • 엄익환;오수진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.802-807
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reactions of aryl benzoates (X-C6H4CO2C6H4-Y) with EtO-, Z-C6H4O- and Z-C6H4C(Me)=NO- in absolute ethanol at 25.0 ℃. All the reactions have been performed in the presence of excess 18-crown-6 ether in order to eliminate the catalytic effect shown by alkali metal ion. A good Hammett correlation has been obtained with a large ρ- value (-1.96) when σ- (Z) constant was used for the reaction of p-nitrophenyl benzoate (PNPB) with Z-C6H4O-. Surprisingly, the one for the reaction of PNPB with Z-C6H4C(Me)=NO- gives a small but definitely positive ρ- value (+0.09). However, for reactions of C6H5CO2C6H4-Y with EtO-, correlation of log k with σ- (Y) constant gives very poor Hammett correlation. A significantly improved linearity has been obtained when σ0 (Y) constant was used, indicating that the leaving group departure is little advanced at the TS of the RDS. For reactions of X-C6H4CO2C6H4-4-NO2 with EtO-, C6H5O- and C6H5C(Me)=NO-, correlations of log k with σ (X) constants for all the three nucleophile systems give good linearity with large positive ρ values, e.g. 2.95, 2.81 and 3.06 for EtO-, C6H5O- and C6H5C(Me)=NO-, respectively. The large ρ values clearly suggest that the present reaction proceeds via a stepwise mechanism in which the formation of the addition intermediate is the RDS.