Abstract
Second-order rate constants have been measured spectrophotometrically for the reactions of aryl benzoates (X-C6H4CO2C6H4-Y) with EtO-, Z-C6H4O- and Z-C6H4C(Me)=NO- in absolute ethanol at 25.0 ℃. All the reactions have been performed in the presence of excess 18-crown-6 ether in order to eliminate the catalytic effect shown by alkali metal ion. A good Hammett correlation has been obtained with a large ρ- value (-1.96) when σ- (Z) constant was used for the reaction of p-nitrophenyl benzoate (PNPB) with Z-C6H4O-. Surprisingly, the one for the reaction of PNPB with Z-C6H4C(Me)=NO- gives a small but definitely positive ρ- value (+0.09). However, for reactions of C6H5CO2C6H4-Y with EtO-, correlation of log k with σ- (Y) constant gives very poor Hammett correlation. A significantly improved linearity has been obtained when σ0 (Y) constant was used, indicating that the leaving group departure is little advanced at the TS of the RDS. For reactions of X-C6H4CO2C6H4-4-NO2 with EtO-, C6H5O- and C6H5C(Me)=NO-, correlations of log k with σ (X) constants for all the three nucleophile systems give good linearity with large positive ρ values, e.g. 2.95, 2.81 and 3.06 for EtO-, C6H5O- and C6H5C(Me)=NO-, respectively. The large ρ values clearly suggest that the present reaction proceeds via a stepwise mechanism in which the formation of the addition intermediate is the RDS.