DOI QR코드

DOI QR Code

Regioselective Addition Reactions of the Organoindium Reagents onto α,β-Unsaturated Ketones

  • Lee, Phil-Ho (Department of Chemistry, Kangwon National University) ;
  • Kim, Hyun (Department of Chemistry, Kangwon National University) ;
  • Lee, Koo-Yeon (Department of Chemistry, Kangwon National University) ;
  • Seomoon, Dong (Department of Chemistry, Kangwon National University) ;
  • Kim, Sun-Dae (Department of Chemistry, Kangwon National University) ;
  • Kim, Hee-Chul (Department of Chemistry, Kangwon National University) ;
  • Kim, Hyun-Seok (Department of Chemistry, Kangwon National University) ;
  • Lee, Mi-Ae (Department of Chemistry, Kangwon National University) ;
  • Shim, Eun-Kyong (Department of Chemistry, Kangwon National University) ;
  • Lee, Seok-Ju (Department of Chemistry, Kangwon National University) ;
  • Kim, Mi-Sook (Department of Chemistry, Kangwon National University) ;
  • Han, Mi-Jeong (Department of Chemistry, Kangwon National University) ;
  • Noh, Kwang-Hyun (Department of Chemistry, Kangwon National University) ;
  • Sridhar, Madabhushi (Department of Chemistry, Kangwon National University)
  • Published : 2004.11.20

Abstract

Regioselectivity on the reactions of ${\alpha},{\beta}$--enones with organoindium such as in situ generated allylindium and allenylindium was systematically studied in the presence of TMSCl as an additive. Treatment of 2-cyclohexen-1-one, carvone, 2-cyclohepten-1-one, and chalcone with allylindium reagent produced 1,4-addition products in good yields, while 2-cyclopenten-1-one, 2-methyl-2-cyclopenten-1-one, 4,4-dimethylcyclohexen-1-one, 3-nonen-2-one, 4-hexen-3-one, and 4-phenyl-3-buten-2-one afforded 1,2-addition products. Indium reagent derived from indium and propargyl bromide in Grignard type gave addition products in good yields, under which the successive addition of ${\alpha},{\beta}$-enone and TMSCl were necessary. Although organoindium reagent derived from propargyl bromide produced propargylated compound in Grignard type except 2-cyclohepten-1-one, indium reagent obtained from 1-bromo-2-butyne having ${\gamma}$-methyl group gave allenylated product inBarbier type.

Keywords

References

  1. Posner, G. H. Org. React. 1972, 19, 1.
  2. Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley-Interscience: New York, 1980.
  3. Lee, P. H.; Shim, S. C.; Kim, S. Bull. Korean Chem. Soc. 1986, 7, 425.
  4. Lipshutz, B. H. Synthesis 1987, 325.
  5. Taylor, R. J. K. Organocopper Reagents; Oxford University Press: Oxford, 1994.
  6. Lee, P. H.; Park, J.; Lee, K.; Kim, H.-C. Tetrahedron Lett. 1999, 40, 7109. https://doi.org/10.1016/S0040-4039(99)01490-2
  7. Lee, P. H.; Bang, K.; Lee, K.; Lee, C.-H.; Chang, S. Tetrahedron Lett. 2000, 41, 7521. https://doi.org/10.1016/S0040-4039(00)01290-9
  8. Lee, P. H.; Ahn, H.; Lee, K.; Sung, S.-Y.; Kim, S. Tetrahedron Lett. 2001, 42, 37. https://doi.org/10.1016/S0040-4039(00)01872-4
  9. Lee, P. H.; Bang, K.; Ahn, H.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1385.
  10. Lee, P. H.; Seomoon, S.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1380.
  11. Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8646. https://doi.org/10.1021/jo0105641
  12. Lee, P. H.; Lee, K.; Chang, S. Synth. Commun. 2001, 31, 3189. https://doi.org/10.1081/SCC-100105896
  13. Lee, P. H.; Bang, K.; Lee, K.; Sung, S.-Y.; Chang, S. Synth. Commun. 2001, 31, 3781. https://doi.org/10.1081/SCC-100108228
  14. Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201. https://doi.org/10.1021/ol016532h
  15. Lee, P. H.; Lee, K.; Kim, S. Org. Lett. 2001, 3, 3205. https://doi.org/10.1021/ol016542i
  16. Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146.
  17. Bang, K.; Lee, K.; Park, Y. K.; Lee, P. H. Bull. Korean Chem. Soc. 2002, 23, 1272. https://doi.org/10.5012/bkcs.2002.23.9.1272
  18. Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem., Int. Ed. 2002, 41, 3901. https://doi.org/10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S
  19. Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. https://doi.org/10.1021/jo026121u
  20. Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P. H. Org. Lett. 2002, 4, 4463. https://doi.org/10.1021/ol026993i
  21. Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Kim, H.; Kim, S.; Lee, P. H.; Iwasawa, N. Org. Lett. 2003, 5, 1725. https://doi.org/10.1021/ol034365a
  22. Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510. https://doi.org/10.1021/jo026600t
  23. Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963. https://doi.org/10.1021/ol035883o
  24. Lee, P. H.; Seomoon, D.; Kim, S.; Nagaiah, K.; Damle, S. V.; Lee, K. Synthesis, 2003, 2189.
  25. Lee, K.; Kim, H.; Miura, T.; Kiyota, K.; Kusama, H.; Kim, S.; Iwasawa, N.; Lee, P. H. J. Am. Chem. Soc. 2003, 125, 9682. https://doi.org/10.1021/ja035988m
  26. Araki, S.; Ito, H.; Butsugan, Y. Synth. Commun. 1988, 453.
  27. Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53, 1831. https://doi.org/10.1021/jo00243a052
  28. Araki, S.; Ito, H.; Katsumura, N.; Butsugan, Y. J. Organomet. Chem. 1989, 369, 291. https://doi.org/10.1016/0022-328X(89)85180-0
  29. Hoppe, H. A.; Lloyd-Jones, G. C.; Murry, M.; Peakman, T. M.; Walsh, K. E. Angew. Chem., Int. Ed. 1998, 37, 1545. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1545::AID-ANIE1545>3.0.CO;2-3
  30. Capps, S. M.; Clarke, T. P.; Charmant, J. P. H.; Hoppe, H. A. F.; Lloyd-Jones, G. C.; Murry, M.; Peakman, T. M.; Stentifold, R. A.; Walsh, K. E.; Worthington, P. A. Eur. J. Org. Chem. 2000, 963.
  31. Wang, L.; Sun, X.; Zhang, Y. Synth. Commun. 1998, 28, 3263. https://doi.org/10.1080/00397919808004431
  32. Araki, S.; Shimizu, T.; Jin, S.-J.; Butsugan, Y. Chem. Commun. 1991, 824.
  33. Araki, S.; Horie, T.; Kato, M.; Hirashita, T.; Yamamura, H.; Kawai, M. Tetrahedron Lett. 1999, 40, 2331. https://doi.org/10.1016/S0040-4039(99)00179-3
  34. Lee, P. H.; Ahn, H.; Lee, K.; Sung, S.-Y.; Kim, S. Tetrahedron Lett. 2001, 42, 37. https://doi.org/10.1016/S0040-4039(00)01872-4
  35. Li, C.-J.; Chan, T.-H. Tetrahedron Lett. 1991, 32, 7017. https://doi.org/10.1016/0040-4039(91)85028-4
  36. Beuchet, P.; Marrec, N. L.; Mosset, P. Tetrahedron Lett. 1992, 33, 5959. https://doi.org/10.1016/S0040-4039(00)61099-7
  37. Kim, E.; Gordon, D. M.; Schmid, W.; Whitesides, G. M. J. Org. Chem. 1993, 58, 5500. https://doi.org/10.1021/jo00072a038
  38. Li, C.-J. Chem. Rev. 1993, 93, 2023. https://doi.org/10.1021/cr00022a004
  39. Bindra, W. H.; Prenner, R. H.; Schmid, W. Tetrahedron 1994, 50, 749. https://doi.org/10.1016/S0040-4020(01)80790-0
  40. Isaac, M. B.; Chan, T.-H. Tetrahedron Lett. 1995, 36, 8957. https://doi.org/10.1016/0040-4039(95)01982-N
  41. Chan, T.-H.; Lee, M.-C. J. Org. Chem. 1995, 60, 4228. https://doi.org/10.1021/jo00118a044
  42. Li, C.-J. Tetrahedron 1996, 52, 5643. https://doi.org/10.1016/0040-4020(95)01056-4
  43. Li, X.-R.; Loh, T.-P. Tetrahedron: Asymmetry 1996, 7, 1535. https://doi.org/10.1016/0957-4166(96)00174-7
  44. Loh, T.-P.; Ho, D. S.-C.; Chua, G.-L.; Sim, K.-Y. Synlett 1997, 563.
  45. Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley: New York, 1997.
  46. Loh, T.-P.; Ho, D. S.; Xu, K.-C.; Sim, K.-Y. Tetrahedron Lett. 1997, 38, 865. https://doi.org/10.1016/S0040-4039(96)02427-6
  47. Chan, T.-H.; Lu, W. Tetrahedron Lett. 1998, 39, 8605. https://doi.org/10.1016/S0040-4039(98)01926-1
  48. Li, C.-J.; Chan, T.-H. Tetrahedron 1999, 55, 11149. https://doi.org/10.1016/S0040-4020(99)00641-9
  49. Isaac, M. B.; Chan, T.-H. Chem. Commun. 1995, 1003.
  50. Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. J. Org. Chem. 1998, 63, 7472. https://doi.org/10.1021/jo9815610
  51. Nair, V.; Jayan, C. N.; Ros, S. Tetrahedron 2001, 57, 9453. https://doi.org/10.1016/S0040-4020(01)00937-1
  52. Paquette, L. A.; Han, Y.-K. J. Am. Chem. Soc. 1981, 103, 1831. https://doi.org/10.1021/ja00397a043
  53. Corey, E. J.; Rucker, C. Tetrahedron Lett. 1982, 23, 719. https://doi.org/10.1016/S0040-4039(00)86930-0
  54. Haruta, J.; Nishi, K.; Matsuda, S.; Akai, S.; Tamura, Y.; Kita, Y. J. Org. Chem. 1990, 55, 4853. https://doi.org/10.1021/jo00303a019
  55. Shibata, I.; Kano, T.; Kanazawa, N.; Fukuoka, S.; Baba, A. Angew. Chem., Int. Ed. 2002, 41, 1389. https://doi.org/10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D

Cited by

  1. Synthesis of (±)-7-Hydroxylycopodine vol.77, pp.17, 2012, https://doi.org/10.1021/jo300353t
  2. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  3. The metal tin promoted cascade reaction of ketones in aqueous media for the construction of 2-bromo-4-aryl-1,3-pentadiene vol.12, pp.29, 2014, https://doi.org/10.1039/C4OB00584H
  4. Protecting-Group-Free Total Synthesis of (−)-Lycopodine via Phosphoric Acid Promoted Alkyne Aza-Prins Cyclization vol.18, pp.17, 2016, https://doi.org/10.1021/acs.orglett.6b02072
  5. Asymmetric Total Synthesis of (−)-Lycospidine A vol.18, pp.18, 2016, https://doi.org/10.1021/acs.orglett.6b02322
  6. Regioselective Addition Reactions of the Organoindium Reagents onto ?,?-Unsaturated Ketones. vol.36, pp.14, 2005, https://doi.org/10.1002/chin.200514075
  7. Regioselective allylgallation of terminal alkynes pp.14, 2005, https://doi.org/10.1039/b417975g
  8. Pd-Catalyzed Substitution Reactions with Organoindium Reagents in situ Generated from Indium and Allyl or Propargyl Halides vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.157
  9. Stereoselective synthesis of conformationally constrained ω-amino acid analogues from pyroglutamic acid vol.3, pp.15, 2004, https://doi.org/10.1039/b503994k
  10. Synthesis of Ermanin, 5,7-Dihydroxy-3,4'-dimethoxyflavone from Kaempferol, 3,5,7,4'-Tetrahydroxyflavone with Two O-Methyltransferases Expressed in E. coli vol.27, pp.3, 2004, https://doi.org/10.5012/bkcs.2006.27.3.357
  11. Indium and Gallium-Mediated Addition Reactions vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.017
  12. Enzymatic Synthesis of Phenolic CoAs Using 4-Coumarate:coenzyme A Ligase (4CL) from Rice vol.28, pp.3, 2007, https://doi.org/10.5012/bkcs.2007.28.3.365
  13. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2004, https://doi.org/10.5012/bkcs.2011.32.8.2911
  14. Formal total synthesis of (±)-7-deoxycylindrospermopsin and its 8-epi isomer vol.8, pp.13, 2004, https://doi.org/10.1039/d1qo00381j