• Title/Summary/Keyword: Adaptive support vector machine

Search Result 51, Processing Time 0.029 seconds

Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images (영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거)

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Uk;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.151-165
    • /
    • 2010
  • Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.

Classifying Malicious Web Pages by Using an Adaptive Support Vector Machine

  • Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.395-404
    • /
    • 2013
  • In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.

Design of umbrella arch method based on adaptive SVM and reliability concept (Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구)

  • Lee, Jun S.;Sagong, Myung;Park, Jeongjun;Choi, Il Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.701-715
    • /
    • 2018
  • A reliability based design approach of the tunnel reinforcement with umbrella arch method was considered to better represent the uncertainties of the weak rock properties around the tunnel. For this, a machine learning approach called an Adaptive Support Vector Machine (ASVM) together with the limit equilibrium method were introduced to minimize the iteration numbers during the classification training of the tunnel stability. The proposed method was compared with the results of typical Monte Carlo simulations. It was concluded that the ASVM was very efficient and accurate to calculate the probability of failure having auxiliary umbrella arches and uncertain material properties of the tunnel. Future work will be concentrated on the refinement of the fast adaptation of the SVM classification so that the minimum number of numerical analyses can be used where the limit solution is not available.

On the Use of Adaptive Weights for the F-Norm Support Vector Machine

  • Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.829-835
    • /
    • 2012
  • When the input features are generated by factors in a classification problem, it is more meaningful to identify important factors, rather than individual features. The $F_{\infty}$-norm support vector machine(SVM) has been developed to perform automatic factor selection in classification. However, the $F_{\infty}$-norm SVM may suffer from estimation inefficiency and model selection inconsistency because it applies the same amount of shrinkage to each factor without assessing its relative importance. To overcome such a limitation, we propose the adaptive $F_{\infty}$-norm ($AF_{\infty}$-norm) SVM, which penalizes the empirical hinge loss by the sum of the adaptively weighted factor-wise $L_{\infty}$-norm penalty. The $AF_{\infty}$-norm SVM computes the weights by the 2-norm SVM estimator and can be formulated as a linear programming(LP) problem which is similar to the one of the $F_{\infty}$-norm SVM. The simulation studies show that the proposed $AF_{\infty}$-norm SVM improves upon the $F_{\infty}$-norm SVM in terms of classification accuracy and factor selection performance.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

Adaptive ridge procedure for L0-penalized weighted support vector machines

  • Kim, Kyoung Hee;Shin, Seung Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1271-1278
    • /
    • 2017
  • Although the $L_0$-penalty is the most natural choice to identify the sparsity structure of the model, it has not been widely used due to the computational bottleneck. Recently, the adaptive ridge procedure is developed to efficiently approximate a $L_q$-penalized problem to an iterative $L_2$-penalized one. In this article, we proposed to apply the adaptive ridge procedure to solve the $L_0$-penalized weighted support vector machine (WSVM) to facilitate the corresponding optimization. Our numerical investigation shows the advantageous performance of the $L_0$-penalized WSVM compared to the conventional WSVM with $L_2$ penalty for both simulated and real data sets.

Vertical Handoff Decision System based on Support Vector Machine

  • Oh, Ryong;Yu, Jae-Hak;Kim, Tae-Sub;Lim, Chi-Hun;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.771-779
    • /
    • 2011
  • It is expected that many heterogeneous wireless systems, such as 3GPP LTE systems, WiMAX systems and WLAN systems, will coexist in the next generation wireless communication environments. Integrated radio resource management and seamless vertical handoff (VHO) should be supported to provide integrated communication services over multi-radio access networks. A new class of adaptive VHO system that views the handoff problem as a pattern recognition problem is proposed. In this paper, we propose a unified radio resource management (URRM) architecture and Support Vector Machine (SVM) based vertical handoff decision system. Extensive simulation studies show the proposed VHO algorithm outperforms RSS based VHO algorithms in terms of throughput and service cost.

Adaptive Speech Streaming Based on Packet Loss Prediction Using Support Vector Machine for Software-Based Multipoint Control Unit over IP Networks

  • Kang, Jin Ah;Han, Mikyong;Jang, Jong-Hyun;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1064-1073
    • /
    • 2016
  • An adaptive speech streaming method to improve the perceived speech quality of a software-based multipoint control unit (SW-based MCU) over IP networks is proposed. First, the proposed method predicts whether the speech packet to be transmitted is lost. To this end, the proposed method learns the pattern of packet losses in the IP network, and then predicts the loss of the packet to be transmitted over that IP network. The proposed method classifies the speech signal into different classes of silence, unvoiced, speech onset, or voiced frame. Based on the results of packet loss prediction and speech classification, the proposed method determines the proper amount and bitrate of redundant speech data (RSD) that are sent with primary speech data (PSD) in order to assist the speech decoder to restore the speech signals of lost packets. Specifically, when a packet is predicted to be lost, the amount and bitrate of the RSD must be increased through a reduction in the bitrate of the PSD. The effectiveness of the proposed method for learning the packet loss pattern and assigning a different speech coding rate is then demonstrated using a support vector machine and adaptive multirate-narrowband, respectively. The results show that as compared with conventional methods that restore lost speech signals, the proposed method remarkably improves the perceived speech quality of an SW-based MCU under various packet loss conditions in an IP network.

Local Binary Pattern Based Defocus Blur Detection Using Adaptive Threshold

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.7-11
    • /
    • 2020
  • Enormous methods have been proposed for the detection and segmentation of blur and non-blur regions of the images. Due to the limited available information about the blur type, scenario and the level of blurriness, detection and segmentation is a challenging task. Hence, the performance of the blur measure operators is an essential factor and needs improvement to attain perfection. In this paper, we propose an effective blur measure based on the local binary pattern (LBP) with the adaptive threshold for blur detection. The sharpness metric developed based on LBP uses a fixed threshold irrespective of the blur type and level which may not be suitable for images with large variations in imaging conditions and blur type and level. Contradictory, the proposed measure uses an adaptive threshold for each image based on the image and the blur properties to generate an improved sharpness metric. The adaptive threshold is computed based on the model learned through the support vector machine (SVM). The performance of the proposed method is evaluated using a well-known dataset and compared with five state-of-the-art methods. The comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all the methods.

Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables (그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신)

  • Kim, Eunkyung;Jhun, Myoungshic;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.961-975
    • /
    • 2016
  • The hierarchically penalized support vector machine (H-SVM) has been developed to perform simultaneous classification and input variable selection when input variables are naturally grouped or generated by factors. However, the H-SVM may suffer from estimation inefficiency because it applies the same amount of shrinkage to each variable without assessing its relative importance. In addition, when analyzing imbalanced data with uneven class sizes, the classification accuracy of the H-SVM may drop significantly in predicting minority class because its classifiers are undesirably biased toward the majority class. To remedy such problems, we propose the weighted adaptive H-SVM (WAH-SVM) method, which uses a adaptive tuning parameters to improve the performance of variable selection and the weights to differentiate the misclassification of data points between classes. Numerical results are presented to demonstrate the competitive performance of the proposed WAH-SVM over existing SVM methods.