Abstract
As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.
최근 GPS 재밍으로 인한 피해가 증가되면서 GPS 재밍을 탐지하고 대비하기 위한 연구가 활발히 진행되고 있다. 본 논문은 다중 GPS 수신채널과 3가지 기계학습을 이용한 GPS 재밍 탐지 방법을 다루고 있다. 제안된 다중 GPS 채널은 항재밍 기능이 없는 상용 GPS 수신기와 항잡음 재밍능력만 있는 수신기, 항잡음/항기만 재밍능력이 있는 수신기로 구성되고 운용자는 각각의 수신기에 수신된 좌표를 비교하여 재밍신호의 특성을 식별할 수 있다. 본 논문에서는 신호특성이 다른 각각의 5개 재밍신호를 입력하고, 3가지 기계학습방법(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree)을 이용하여 재밍탐지 시험을 수행하였다. 시험 결과 머신러닝 기법을 단독으로 사용하였을 때 DT 기법이 96.9% 탐지율로 가장 우수한 성능을 보였으며 이진분류기 기법에 비해 모호성 낮고 하드웨어가 단순하여 GPS 재밍탐지에 효과적임을 확인하였다. 또한, 모호성을 해결해주는 추가기법을 적용할 경우 SVM 기법을 활용할 수 있음을 확인하였다.