Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Amaldi, E. and Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237-260. https://doi.org/10.1016/S0304-3975(97)00115-1
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Frommlet, F. and Nuel, G. (2016). An adaptive ridge procedure for l0 regularization. PloS One, 11, e0148620. https://doi.org/10.1371/journal.pone.0148620
- Fung, G. M., Mangasarian, O. L. and Smola, A. J. (2002). Minimal kernel classifiers. Journal of Machine Learning Research, 3, 303-321.
- Huang, K., King, I. and Lyu, M. R. (2008). Direct zero-norm optimization for feature selection. Eighth IEEE International Conference, 845-850.
- Kim, K. H., Shin, S. J., Hwang, C. and Shim, J. (2017). Geographically weighted least squares-support vector machine. Journal of the Korean Data & Information Science Society, 28, 227-235. https://doi.org/10.7465/jkdi.2017.28.1.227
- Lin, Y., Lee, Y. and Wahba, G. (2002). Support vector machines for classification in nonstandard situations. Machine Learning, 46, 191-202. https://doi.org/10.1023/A:1012406528296
- Shim, J. and Seok, K. (2014). A transductive least squares support vector machine with the difference convex algorithm. Journal of the Korean Data & Information Science Society, 25, 455-464. https://doi.org/10.7465/jkdi.2014.25.2.455
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1, 267-288.
- Vapnik, V. (2013). The nature of statistical learning theory, Springer Science & Business Media.
- Wang, J., X. Shen and Y. Liu (2007). Probability estimation for large-margin classifiers. Biometrika, 95, 149-167.
- Weston, J., A. Elisseeff, B. Scholkopf and M. Tipping (2003). Use of the zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3, 1439-1461.
- Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhang, H. H. and W. Lu (2007). Adaptive lasso for coxs proportional hazards model. Biometrika, 94, 691-703. https://doi.org/10.1093/biomet/asm037
- Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735