• Title/Summary/Keyword: Adaptive genetic algorithm

검색결과 227건 처리시간 0.024초

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계 (A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms)

  • 원태현;황기현;박준호;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

적응 PSO 알고리즘을 이용한 개인생활자계노출량 계산식 개발 (Development of MF-Dos using Adaptive PSO Algorithm)

  • 황기현;양광호;주문노;이민중
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.649-658
    • /
    • 2008
  • 본 논문에서는 기존의 PSO(Conventional Particle Swarm Optimization : CPSO) 알고리즘에서 매 반복횟수마다 매개변수 값을 적응적으로 변화시키는 적응 PSO(APSO) 알고리즘을 제안하였다. 본 논문에서 제안한 APSO의 성능을 평가하기 위해 De Jong함수, Ackley 함수, Davis 함수 Griewank 함수 등의 최소화 문제에 적용하여 실수형 유전알고리즘과 그 결과를 비교하여, 제안한 알고리즘에 대한 우수성을 증명하였다. 그리고 자계계측기와 설문지를 통해 얻은 전자계 노출량에 대한 실측데이터를 이용하여 개인생활 자계노출식 개발에 제안한 APSO를 적용하여 그 우수성을 입증하였다.

유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화 (Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm)

  • 김현돈;조성배
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.223-230
    • /
    • 2001
  • 자기구성 지도는 주어진 입력에 대해 올바른 출력 값이 제공되지 않는 비교사 방식으로 학습된다. 또한, 반응하는 순서나 위치를 통해 위상이 보존(topology preserving)되는 특성을 가지고 있어 많은 분야에 응용되고 있다. 그러나, 자기 구성지도는 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 단점을 가지고 있다. 구조 적응형 자기구성 지도는 자기구성 지도의 고정된 구조 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 또한 중요한 문제이다. 이 논문에서는 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도보다 다소 높은 인식률을 보였고, 숫자 별 인식률 편차를 줄일 수 있었다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

Adaptive User Profile for Information Retrieval from the Web

  • Srinil, Phaitoon;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1986-1989
    • /
    • 2003
  • This paper proposes the information retrieval improvement for the Web using the structure and hyperlinks of HTML documents along with user profile. The method bases on the rationale that terms appearing in different structure of documents may have different significance in identifying the documents. The method partitions the occurrence of terms in a document collection into six classes according to the tags in which particular terms occurred (such as Title, H1-H6 and Anchor). We use genetic algorithm to determine class importance values and expand user query. We also use this value in similarity computation and update user profile. Then a genetic algorithm is used again to select some terms from user profile to expand the original query. Lastly, the search engine uses the expanded query for searching and the results of the search engine are scored by similarity values between each result and the user profile. Vector space model is used and the weighting schemes of traditional information retrieval were extended to include class importance values. The tested results show that precision is up to 81.5%.

  • PDF

Optimizing Movement of A Multi-Joint Robot Arm with Existence of Obstacles Using Multi-Purpose Genetic Algorithm

  • Toyoda, Yoshiaki;Yano, Fumihiko
    • Industrial Engineering and Management Systems
    • /
    • 제3권1호
    • /
    • pp.78-84
    • /
    • 2004
  • To optimize movement of a multi-joint robot arm is known to be a difficult problem, because it is a kind of redundant system. Although the end-effector is set its position by each angle of the joints, the angle of each joint cannot be uniquely determined by the position of the end-effector. There exist the infinite number of different sets of joint angles which represent the same position of the end-effector. This paper describes how to manage the angle of each joint to move its end-effector preferably on an X-Y plane with obstacles in the end-effector’s reachable area, and how to optimize the movement of a multi-joint robot arm, evading obstacles. The definition of “preferable” movement depends upon a purpose of robot operation. First, we divide viewpoints of preference into two, 1) the standpoint of the end-effector, and 2) the standpoint of joints. Then, we define multiple objective functions, and formulate it into a multi-objective programming problem. Finally, we solve it using multi-purpose genetic algorithm, and obtain reasonable results. The method described here is possible to add appropriate objective function if necessary for the purpose.

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

다층 신경회로망을 이용한 비선형 시스템의 견실한 제어 (Robust control of Nonlinear System Using Multilayer Neural Network)

  • 조현섭
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.243-248
    • /
    • 2013
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

GA 기반 퍼지 제어기의 설계 및 트럭 후진제어 (A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control)

  • 곽근창;김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.