DOI QR코드

DOI QR Code

Development of MF-Dos using Adaptive PSO Algorithm

적응 PSO 알고리즘을 이용한 개인생활자계노출량 계산식 개발

  • Published : 2008.10.25

Abstract

In this paper, we proposed an adaptive PSO(APSO) algorithm which changes parameter values with every recursion based on the conventional particle swam optimization(CPSO). In order to solve the optimization problem, the proposed APSO algorithm is applied to some functions, such as the De Jong function, Ackley function, Davis function and Griewank function. The superiority of the proposed APSO algorithm compared with the genetic algorithm(GA) is proved through the numerical experiment. Finally we applied the proposed algorithm to developing a function for personal magnetic field exposure based with real datas which are acquired based on the consumer research and field measuring instrument.

본 논문에서는 기존의 PSO(Conventional Particle Swarm Optimization : CPSO) 알고리즘에서 매 반복횟수마다 매개변수 값을 적응적으로 변화시키는 적응 PSO(APSO) 알고리즘을 제안하였다. 본 논문에서 제안한 APSO의 성능을 평가하기 위해 De Jong함수, Ackley 함수, Davis 함수 Griewank 함수 등의 최소화 문제에 적용하여 실수형 유전알고리즘과 그 결과를 비교하여, 제안한 알고리즘에 대한 우수성을 증명하였다. 그리고 자계계측기와 설문지를 통해 얻은 전자계 노출량에 대한 실측데이터를 이용하여 개인생활 자계노출식 개발에 제안한 APSO를 적용하여 그 우수성을 입증하였다.

Keywords

References

  1. Zaffanella L.E., Kalton, G.W., Survey of Personal Magnetic Field Exposure, Phase II:1000-Person Survey, EMF RAPID Engineering Project #6, May, 1998
  2. Christoper J. Portier, Mary S. Wolfe, Assessment of Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields, Working Group Report, Jun, 1998
  3. D. E. Goldberg, Genetic Algorithms in Search, ptimization, and Machine Learning, Addison-Wesley publishing Company, INC., 1989
  4. Th. Back, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 1996
  5. Th. Back and H. P. Schwefel, "Evolutionary Computation: An overview", Proceeding of the Third IEEE Conference on Evolutionary Computation, pp. 20-29, 1996
  6. J. Kennedy and R. Eberhart, "Particle Swarm Optimization", Proceedings of IEEE international Conference on Neural Networks (ICNN'95), Vol. IV, pp.1942-1948, perth, Australia,1995
  7. Y. Shi and R. Eberhart, "A modified particle swarm optimization", In proc. of IEEE Int. Conf. on Evolutionary Computation, Anchorage, USA, May 1998
  8. M. Clerc and J. Kennedy, "The Particle Swarm - Explosion, Stability, and Convergence in a Multidimensional Complex Space", IEEE Transactions on Evolutionary Computation, Vol. 6, No13, February 2002