• Title/Summary/Keyword: Adaptive estimation

Search Result 1,423, Processing Time 0.025 seconds

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

Speed Estimation and Control of IPMSM using HAI Control (HAI 제어를 이용한 IPMSM의 속도 추정 및 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF

Study on the analysis Adaptive Observers to Control SRM Control Meathod (SRM 제어방법들에 대한 적응관측기들의 분석)

  • Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.160-164
    • /
    • 2007
  • MRAS observer, which is based on adaptive control theory, estimates speed and position by using optimal observer gains on the basis of Lyapunov stability theory. However, in case of MRAS theory, position estimation error is in existence because of non-linearity for inductance variation and limit cycles for position estimation. The adaptive sliding observer based on the variable structure control theory estimates the speed and position for zero of estimation error by using the sliding surface equal to the error between speed and position estimation. The binary observer estimates the rotor speed and rotor flux with alleviation of the high-frequency chattering, and retains the benefits achieved in the conventional sliding observer, such as robustness to parameter and disturbance variations. The speed and position sensorless control of SRM under the load and inductance variation is verified by the experimental results.

  • PDF

Speech Enhancement Using Level Adapted Wavelet Packet with Adaptive Noise Estimation

  • Chang, Sung-Wook;Kwon, Young-Hun;Jung, Sung-Il;Yang, Sung-Il;Lee, Kun-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.87-92
    • /
    • 2003
  • In this paper, a new speech enhancement method using level adapted wavelet packet is presented. First, we propose a level adapted wavelet packet to alleviate a drawback of the conventional node adapted one in noisy environment. Next, we suggest an adaptive noise estimation method at each node on level adapted wavelet packet tree. Then, for more accurate noise component subtraction, we propose a new estimation method of spectral subtraction weight. Finally, we present a modified spectral subtraction method. The proposed method is evaluated on various noise conditions: speech babble noise, F-l6 cockpit noise, factory noise, pink noise, and Volvo car interior noise. For an objective evaluation, the SNR test was performed. Also, spectrogram test and a very simple listening test as a subjective evaluation were performed.

A Modified Velocity Estimation Scheme in AAS (Adaptive Antenna System) (AAS(적응형 안테나 시스템)에서의 이동체 속도 추정 방안)

  • Chung, Young-Uk;Choi, Yong-Hoon;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.100-107
    • /
    • 2009
  • Velocity estimation is one of important issues for efficient system management in mobile cellular systems. In this paper, a modified velocity estimation scheme which works in Adaptive Antenna System (AAS) is proposed. The proposed scheme estimates user velocity based on moving distance information and sojourn time information. From numerical results, it is shown that the proposed scheme can estimate user velocity accurately with low cost.

  • PDF

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

  • Lei Yong-Jun;Wu Hong-Xin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.