• 제목/요약/키워드: Adaptive Observer Gain

검색결과 42건 처리시간 0.019초

적응 퍼지 고이득 관측기를 이용한 교류 서보 전동기 제어 (Control of AC Servo Motor Using Adaptive Fuzzy High Gain Observer)

  • 김상훈;윤광호;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.53-55
    • /
    • 2004
  • This paper deals with speed control of AC servo motor using a Adaptive fuzzy high gain observer. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive fuzzy high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive fuzzy high gain observer in the speed control of AC servo motor.

  • PDF

센서없는 직류서보전동기의 속도 제어를 위한 적응 고이득 관측기 설계 (Design of a Adaptive High-Gain Observer for Speed-Sensorless Control of DC Servo Motor)

  • 김상훈;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권12호
    • /
    • pp.663-670
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a Adaptive high gain obserber. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

전동기 센서리스제어를 위한 적응 고이득 관측기 설계 (Design of an Adaptive High-Gain Observer for Speed-Sensorless Control of Motor)

  • 김상훈;윤광호;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.484-487
    • /
    • 2003
  • In this paper describes a design of Adaptive high gain observer. The gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the simulation to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

  • PDF

Gain Design of an Adaptive Full-order Observer Using a Pole Placement Technique for Speed Sensorless Induction Motor Drives

  • Yoo, Anno;Han, Sang-Heon;Son, Young Ik;Yoon, Young-Doo;Hong, Chanook
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1346-1354
    • /
    • 2016
  • This paper proposes a design guideline for the feedback gain of the adaptive full-order observer in the speed sensorless control of induction machines. The performance of the adaptive full-order observer is dependent on its feedback gain. This paper presents a pole placement method for the observer feedback gain design to improve the estimation performance of the speed adaptive observer. In the proposed method, the observer poles can be chosen independently of the induction motor poles. Instead, they can be positioned according to the operating speed. An analysis and experimental results obtained with the proposed method reveals better performances under general operating conditions.

최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계 (Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

Robust Adaptive Fuzzy Observer Based Synchronization of Chaotic Systems

  • Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.341-344
    • /
    • 2007
  • This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization of chaotic systems. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. This improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived and the stability of the proposed observer is analyzed. Some simulation result is given to present the validity of theoretical derivations and the performance of the proposed observer.

  • PDF

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

Asymptotically Stable Adaptive Load Torque Observer for Precision Position Control of BLDC Motor

  • 고종선
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.97-100
    • /
    • 1997
  • A new control method for the robust position control of a brushless DC(BLDC) motor using the asymptotically stable adaptive load torque observer is presented. A precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method. And the application of the load torque observer is published in [1] using fixed gain. However, the flux linkage is not exactly known for a load torque observer. Therefore, a model reference adaptive observer is considered to overcome the problem of the unknown parameter in this paper. And stability analysis is carried out using Liapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current having the fast response.

  • PDF

소형 선박용 전기추진시스템을 위한 PMSM의 센서리스 제어 (Sensorless Control of a Permanent Magnet Synchronous Motor for Electric Propulsion System of Small Ships)

  • 정태영;와유쿤토위보오;정석권
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.778-784
    • /
    • 2017
  • This paper proposes a sensorless speed control of a permanent magnet synchronous motor (PMSM) based on an adaptive sliding mode observer (SMO) for electric propulsion system of small ships. An adaptive observer gain is proposed based on the Lyapunov's stability criterion to reduce the chattering problem at any speed operation instead of the constant gain observer. Furthermore, a cascade low-pass filter with variable cut-off frequency is suggested to strengthen the filtering capability of the observer. The experimental results from a 1.5 kW PMSM drive are provided to verify the effectiveness of the proposed adaptive SMO. The result shows that the proposed method gives good speed control performances even when the PMSM operates at 0.5% from its rated speed value.

PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구 (Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM)

  • 고종선;윤성구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF