• 제목/요약/키워드: Adaptive Genetic Algorithms

검색결과 96건 처리시간 0.023초

GA-based Adaptive Load Balancing Method in Distributed Systems

  • Lee, Seong-Hoon;Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.59-64
    • /
    • 2002
  • In the sender-initiated load balancing algorithms, the sender continues to send an unnecessary request message fur load transfer until a receiver is found while the system load is heavy. Meanwhile, in the receiver-initiated load balancing algorithms, the receiver continues to send an unnecessary request message for load acquisition until a sender is found while the system load is light. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, in this paper, we propose a genetic algorithm based approach fur improved sender-initiated and receiver-initiated load balancing. The proposed algorithm is used for new adaptive load balancing approach. Compared with the conventional sender-initiated and receiver-initiated load balancing algorithms, the proposed algorithm decreases the response time and increases the acceptance rate.

A New Adaptive Load Sharing Mechanism in Homogeneous Distributed Systems Using Genetic Algorithm

  • Lee Seong-Hoon
    • International Journal of Contents
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2006
  • Load sharing is a critical resource in computer system. In sender-initiated load sharing algorithms, the sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Meanwhile, in the receiver initiated load sharing algorithms, the receiver continues to send an unnecessary request message for load acquisition until a sender is found while the system load is light. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, we propose a genetic algorithm based approach for improved sender-initiated and receiver-initiated load sharing in distributed systems. And we expand this algorithm to an adaptive load sharing algorithm. Compared with the conventional sender-initiated and receiver-initiated algorithms, the proposed algorithm decreases the response time and task processing time.

  • PDF

적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계 (A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms)

  • 원태현;황기현;박준호;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

적응 HFC 기반 유전자알고리즘의 새로운 접근: 교배 유전자 연산자의 비교연구 (A New Approach to Adaptive HFC-based GAs: Comparative Study on Crossover Genetic Operator)

  • 김길성;최정내;오성권
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1636-1641
    • /
    • 2008
  • In this study, we introduce a new approach to Parallel Genetic Algorithms (PGA) which combines AHFCGA with crossover operator. As to crossover operators, we use three types of the crossover operators such as modified simple crossover(MSX), arithmetic crossover(AX), and Unimodal Normal Distribution Crossover(UNDX) for real coding. The AHFC model is given as an extended and adaptive version of HFC for parameter optimization. The migration topology of AHFC is composed of sub-populations(demes), the admission threshold levels, and admission buffer for the deme of each threshold level through succesive evolution process. In particular, UNDX is mean-centric crossover operator using multiple parents, and generates offsprings obeying a normal distribution around the center of parents. By using test functions having multimodality and/or epistasis, which are commonly used in the study of function parameter optimization, Experimental results show that AHFCGA can produce more preferable output performance result when compared to HFCGA and RCGA.

천장형 설비의 배치 설계를 위한 해법의 개발 (Algorithms on layout design for overhead facility)

  • 양병학
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.

Reliability Optimization Problems using Adaptive Hybrid Genetic Algorithms

  • Minoru Mukuda;Yun, Young-Su;Mitsuo Gen
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes an adaptive hybrid genetic algorithm (aHGA) for effectively solving the complex reliability optimization problems. The proposed aHGA uses a loca1 search technique and an adaptive scheme for respectively constructing hybrid algorithm and adaptive ability. For more various comparisons with the proposed adaptive algorithm, other aHGAs with conventional adaptive schemes are considered. These aHGAs are tested and analyzed using two complex reliability optimization problems. Numerical result shows that the proposed aHGA outperforms the other competing aHGAs.

  • PDF

자가 적응형 메타휴리스틱 최적화 알고리즘 개발: Self-Adaptive Vision Correction Algorithm (Development of Self-Adaptive Meta-Heuristic Optimization Algorithm: Self-Adaptive Vision Correction Algorithm)

  • 이의훈;이호민;최영환;김중훈
    • 한국산학기술학회논문지
    • /
    • 제20권6호
    • /
    • pp.314-321
    • /
    • 2019
  • 본 연구에서 개발된 Self-Adaptive Vision Correction Algorithm (SAVCA)은 광학적 특성을 모방하여 개발된 Vision Correction Algorithm (VCA)의 총 6개의 매개변수 중 자가 적응형태로 구축된 Division Rate 1 (DR1) 및 Division Rate 2 (DR2)를 제외한 Modulation Transfer Function Rate (MR), Astigmatic Rate (AR), Astigmatic Factor (AF) 및 Compression Factor (CF) 등 4개의 매개변수를 변경하여 사용성을 증대시키기 위해 제시되었다. 개발된 SAVCA의 검증을 위해 기존 VCA를 적용하였던 2개 변수를 갖는 수학 문제 (Six hump camel back 및 Easton and fenton) 및 30개 변수를 갖는 수학 문제 (Schwefel 및 Hyper sphere)에 적용한 결과 SAVCA는 비교한 다른 알고리즘 (Harmony Search, Water Cycle Algorithm, VCA, Genetic Algorithms with Floating-point representation, Shuffled Complex Evolution algorithm 및 Modified Shuffled Complex Evolution)에 비해 우수한 성능을 보여주었다. 마지막으로 공학 문제인 Speed reducer design에서도 SAVCA는 가장 좋은 결과를 보여주었다. 복잡한 매개변수 조절과정을 거치지 않은 SAVCA는 여러 분야에서 적용이 가능할 것이다.

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정 (Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms)

  • 허석;곽문규
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

유전자 알고리즘을 이용한 적응 퍼지 제어 시스템의 새로운 방법 (A New Method of Adaptive Fuzzy Control System Using Genetic Algorithms)

  • 장원빈;김동일;권기호
    • 전자공학회논문지CI
    • /
    • 제38권2호
    • /
    • pp.9-15
    • /
    • 2001
  • 본 논문은 적응 피지 제어 시스템에 있어 유전자 알고리즘에 대한 새로운 방법을 제안한다. 다중개체군 유전자 알고리즘을 이용한 이전의 논문은 염색체를 두부분(제어규칙과 소속함수)으로 분할하였다. 그러나 이런 경우 좋지 못한 제어규칙은 좋은 제어규칙과 잘 진화된 소속함수의 최적화를 방해한다. 다중개체군 유전자 알고리즘에 대한 새로운 방법은 염색체를 세부분(좋은 제어규칙, 좋지 못한 제어규칙 및 소속함수)으로 분할하는 것이다. 이 방법에 대한 효율성을 입증하기 위해 트럭 배킹 문제에 적용하였다. 시뮬레이션 결과 다중개체군 유전자 알고리즘에 대한 제안된 방법이 좋은 적응성을 보여 주었다.

  • PDF