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Abstract 
This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot 
dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network 
(FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the 
uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the 
convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different 
parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the 
accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control 
scheme are demonstrated through computer simulations. 
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1. Introduction 
 
In the past, many research results on the path tracking 

control problem for a wheeled mobile robot have been 
proposed. “Perfect velocity tracking” was put forward in 
Kanayama et al. [1] to solve this problem for the kinematic 
model. In Fierro and Lewis [2], a dynamic controller was 
presented to integrate into the kinematic controller. However, 
the controller assumed that the dynamic parameters have to be 
completely known. This requirement cannot be carried out in 
practical situations where it is very difficult to completely 
obtain the exact parameters of the model. Das and Kar [3] 
proposed an adaptive fuzzy controller to approximate a 
nonlinear function involving the robot dynamics so that no 
knowledge of the robot parameters could be required. In Das 
and Kar [3], although the actuator dynamics was taken into 
account, the parameters for the actuators were still required and 
the same parameters for the right and left actuator models were 
also used.  

The fuzzy basis function network with a powerful 
competence for uniformly approximating any nonlinear 
function over compact input space has been suggested by many 
researchers, as shown in Das and Kar [3], Wang and Mendel 
[4], and Wang [7]. Although the previous robot controllers 
have showed good performance in many simulations and 
experiments, few literatures on the robustness of the controller 
against parameter variations and disturbances have been 
discussed. Shin et al. [5] and Kim et al. [6] presented a robust 

adaptive controller for robots and showed the robustness to 
uncertainties. Depending on the number of inputs and linguistic 
degrees of control variable, a lot of logic rules are produced. In 
many case they are potential redundant rules that not only have 
no effect on fuzzy inference but also make the system response 
worse.  Therefore, it is necessary to optimize those fuzzy rules. 
Probabilistic optimization methods, such as GAs have been 
proven suitable for selecting those fuzzy rules as presented in 
Pishkenari et al. [8], Herrera et al. [9], and Lekova et al. [10]. 

In this paper, we establish a new control scheme so that a 
wheeled mobile robot can track the desired reference path 
asymptotically against uncertainties. The scheme is based on 
the structure of FBFN and employs the adaptive and genetic 
algorithm techniques. The actuator dynamics for the two 
wheels of a wheeled mobile robot are included in the robot 
dynamic model, and the accurate parameters for the actuator 
parameters as well as the robot parameters are not required in 
the proposed controller.  

 
 

2. A Wheeled Mobile Robot System 
 

2.1 Kinematics and dynamics of a wheeled mobile robot 
The pose of a wheeled mobile robot in the global reference 

coordinate frame { , , }O X Y is completely specified by the 

generalized coordinates [ ]T
c cq x y θ= , where cx  and 

cy  are the coordinates of the point C of the center of mass 
(COM) with respect to the global reference coordinate frame 
and θ  is the orientation of the local frame { , , }c cC X Y  
attached on the robot platform measured from X  axis of the 
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global reference coordinate frame. A wheeled mobile robot and 
the coordinate frames are shown in Fig. 1. 

A nonholonomic mobile robot system having a 
n dimensional configuration space C with n  generalized 
configuration variables 1 2( , ,..., )nq q q and subject to 
m constraints can be described by 

 

 
Fig. 1 A nonholonomic wheeled mobile robot 

 

 ( ) ( , ) ( ) ( )m dM q q V q q q B q A qτ τ λ+ + = −  (1) 

where ( ) n nM q ×∈ℜ  is a symmetric positive definite inertia 
matrix, ( , ) n n

mV q q ×∈ℜ  is the centripetal and coriolis matrix, 
1n

dτ ×∈ℜ  denotes bounded unknown disturbances including 

unmodeled dynamics, ( ) n rB q ×∈ℜ  is the input transformation 
matrix, 1rτ ×∈ℜ  is the input torque vector, ( ) n mA q ×∈ℜ  is 

the matrix associated with the constraints, and 1mλ ×∈ℜ  is the 
vector of constraint forces. 

The complete equations of motion of a wheeled mobile robot 
can be rewritten as  

 ( ) ( )q S q v t=  (2) 

 m dMv V v Bτ τ+ + =   (3) 

Wher ,  ( ),  ,T T T
m m d dM S MS V S MS V S Sτ τ= = + = TB S B= , 

and the wheel torque vector [    ]T
r lτ τ τ= . The actual velocity 

vector v  is written by [ ]l av v w= , and lv  and aw  are 

the linear velocity of the point P  along the robot axis and 
angular velocity, respectively.  

The matrix 
cos sin

( ) sin cos
0 1

d
S q d

θ θ
θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

can be easily obtained 

from the following nonholonomic constraint equation, which is 
sincx θ− coscy θ+ 0dθ− = under the pure rolling and non-

slipping condition of a mobile robot with two wheels.  
Property 1: M is uniformly positive definite, as shown in 

Fierro and Lewis [2] and Kim et al. [6].  

Property 2: ( )2 mM V− is skew symmetric, as shown in 

Fierro and Lewis [2], and Kim et al. [6].  
Property 3: There exist unknown positive constants 

max ,M max ,V  max ,dτ  and maxB such that max( ) ,M q M≤  

max( , ) ,mV q q V q≤  maxd dτ τ≤ , and maxB B≤ , as found in 

Kim et al. [6].  
 

2.2 Dynamic model of a wheeled mobile robot including 
actuator dynamics 

The actuator dynamics with the same parameters for two DC 
motors was presented in Das and Kar [3]. In this paper, it is 
considered that two DC motors have the different parameters. 
The dynamics equation of a wheeled mobile robot including the 
actuator dynamics can be written as  

 m v dMv V v BD v Huτ+ + + =  (4) 

where ,uH BD=  
1 11 ,B
R Rr
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
  

, ,r Tr l Tl
u

ar al

N K N KD diag
R R

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  

11 ,
1

R
X

Rr
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
  

2 2

, ,r Tr br l Tl bl
v

ar al

N K K N K KD diag X
R R

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
 and 1 2( , )diag a a  

represents a 2 2×  diagonal matrix of the diagonal elements 
1a  and 2a . and  r lN N  are gear ratios of the right and left 

motors, respectively. and  Tr TlK K  are the motor torque 
constants, arR  and alR  are the electric resistances, 

and  br blK K  are the counter electromotive force coefficients 
of left and right motors, respectively. The length constants R  
and r  in two wheels are shown in Fig. 1. The vector 

[    ]T
r lu u u=  is the actuator input voltage vector and used as 

the control input instead of the wheel torque vector τ . In this 
robot model (4), the motor inductances are neglected. 
 
 

3. Design of An Adaptive Robust Fuzzy 
Controller with GAs 

 
3.1 Controller Design 
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Fig. 2 Controller scheme. 
 
Fig.2 shows the structure of the whole system. The output of 

the kinematic controller is employed as the input of the 
dynamic controller. 

If we assume “perfect velocity tracking” for the kinematic 
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model (2), then the kinematic model is asymptotically stable. 
The desired reference trajectory  ( )rq t  and the actual posture 

( )q t  of the mobile robot are expressed by 

[ ]( ) ( ) ( ) ( ) T
r r r rq t x t y t tθ= and [ ]( ) ( ) ( ) ( ) Tq t x t y t tθ= , 

respectively. The tracking errors are obtained in the basis of a 
frame fixed on the mobile robot as 

 1

2

3

   ( ) ,   

cos sin 0
sin cos 0
0 0 1

p e r e q q r

r

p r

r

E T q q T E E q q

e x x
E e y y

e

θ θ
θ θ

θ θ

= − = = −

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (5) 

The velocity control input vector cv  that achieves the 

asymptotic tracking for the kinematic model is  

 3 1 1

2 2 3 3

cos
sin

lc r
c

ac r r r

v v e k e
v

w w k v e k v e
+⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
 (6) 

where rv  and rw  are the reference linear velocity and 

angular velocity of the mobile robot, the control gains 
1 20,  0,k k> >  and 3 0k > are design  parameters, as shown 

in Kanayama et al [1]. This velocity control input (6) can 
guarantee that pE  converges to zero asymptotically as time 

goes to infinity when d  is zero.  
Once the auxiliary velocity control input vector 
( ) n m

cv t −∈ℜ  is obtained for the asymptotically stable 

kinematic steering system, we need to design an actuator input 
voltage ( )u t  to guarantee the robust tracking despite 
unknown robot and actuator dynamic parameters and external 
disturbances.  

The auxiliary velocity tracking error is denoted as 

 c ce v v= −  (7) 

Differentiating (7) with respect to time and substituting it 
into (4), the robot dynamics can be expressed as  

 c m c c m c v dMe V e Mv V v BD v Hu τ= − + + + − +  (8) 

where the nonlinear function containing the dynamic 
parameters of the robot and actuator parameters is  

 ( ) c m c vf x Mv V v BD v= + +   (9) 

The above nonlinear function (9) can be approximated using 
a following FBFN as referred to Wang and Mendel [4]. 

 

1

2

1

1

( )
( )

( )
( )

( )

N

vj vj
j v

N
w

wj wj
j

p x
x

f x
x

p x

θ
ε
ε

θ

=

=

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
( , , ) ( )c cR v v v xε= Φ +  (10) 

 
1 2

1 21 2

1 2
1 2

1 1

1 11 1

( ) ( )
( ) ,   ( ) ,  

( ) ( )

j j
i i

j j
i i

n n
i iA Ai i

vj wjn nN N
i ij jA Ai i

x x
p x p x

x x

μ μ

μ μ
= =

= == =

= =
∏ ∏

∑ ∑∏ ∏
  

 1 1 2 21,,2,..., ,   1,,2,...,j N j N= =   (11) 

where ( ), ,c cx v v v=  is the input variable vector of fuzzy 

basis functions, ( )vjp x  and ( )wjp x  are called the fuzzy basis 

functions which correspond to fuzzy IF-THEN rules, vjθ  and 

wjθ  are free parameters, 1 22 [2*max( , )]( , , ) N N
c cR v v v ×∈ℜ  is called 

a fuzzy basis function matrix, 1 22*max( , )T N NT T
v wθ θ⎡ ⎤Φ = ∈ℜ⎣ ⎦  

is a desired parameter vector, which is an unknown constant 
vector to be determined to closely approximate the nonlinear 
function. ( )xε  is the approximation error vector. ( )j

iA
xμ  

and ( )j
iA

xμ  represent the Gaussian membership functions, 

defined by 

 
2

1( ) exp
2

j
i

j
j i i

i i jA
i

x xx aμ
σ

⎡ ⎤⎛ ⎞−⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 

where ,j j
i ia x  and j

iσ  are real-valued parameters with 

0 1j
ia< ≤ .  

Property 4 : From Property 3 and the structure of the FBFN 
(10)~(11), there exist unknown positive constants 1 2 3, ,θ θ θ  

and 4θ such that  

 1 2 3 4( ) .c c ex v q v vε θ θ θ θ ρ≤ + + + =  (12) 

 
3.2 Central ideal for optimization of fuzzy rules by GAs 

GAs are the adaptive stochastic methods of searching in a 
population of abstract representations (chromosomes) of 
candidate solutions based on the evaluation of fitness function 
to rate potential solutions in terms of their fitness. GAs proceed 
to initialize a population of randomly generated solutions and 
meliorate it by applying genetic operations inspired by 
evolutionary biology such as selection, crossover, mutation. A 
new generation of solutions with higher fitness is produced to 
replace its parent. 

 

 
Fig. 3 FBFN structure with GAs. 

 
Each chromosome is represented by a bit string, and each 

logic if-then rule derived from the FBFN is denoted by a gene. 
Gene “1” of the chromosome represents that the rule is selected, 
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while gene “0” infers the contrary. For instance, for three input 
variables in the FBFN, and three membership functions for 
each variable, there are totally 27 rules are possibly produced. 
Hence, a chromosome with 27 binary values is needed to 
present the selected rules in the FBFN. The parallel structure of 
a FBFN with GAs is shown in Fig. 3.  

In the reproduction process, we use two basic genetic 
operators: mutation and crossover. The crossover operation 
allows two chromosomes to exchange their information 
randomly so that new generation with good genes can be 
produced. The mutation operation randomly alters the genes to 
create diversity in the population. After these procedures, a new 
solution represented for selected fuzzy rules is applied to the 
FBFN to control the system. Fig. 4 describes the flowchart of 
GAs in the proposed controller. 

 

 
Fig. 4 Flowchart of GAs in the controller. 

 
During control process, the FBFN is modified on-line after 

each sampling time by the procedure of selecting solutions 
according to the definition of the fitness to minimize the 
dynamic tracking error. The sampling time of GAs tuning is 
chosen as 0.2 second so that the fuzzy rules do not change so 
rapidly, which might become the potential source of 
disturbance to the system. 

The fitness function of GAs can be simply defined as : 

2

1
( )fitness

c

f
v v

=
−

 

The goal is to make the tracking error ce as small as 
possible, yet still guarantee the stability of the system; hence 
improve the kinematic tracking performance. 

 
3.3 Controller structure 

It is considered that the input matrix H  including the 
actuator parameters is unknown. Hence the control input is 
chosen as follows,  

 1ˆu H u−=  (13) 

where Ĥ  is the guessed nominal parameter matrix of H  
and u  is an adaptive fuzzy control input.  

Substituting (13) into (8), the closed-loop error dynamics for 
ce  is  

 1ˆ( ) ( )c m c dMe V e f x I HH u u τ−= − + + − − +  (14) 

Assumption 1: There exist a positive constant 0C  such that  

  1
0

ˆ 1I HH C−− ≤ <  (15) 

Theorem 1: Under Assumption 1, if the following control 
and adaptation laws (16)~(19) are applied to the wheeled 
mobile robot system (2) and (4), then ce  converges to zero 
asymptotically when 0rv > . Therefore, in the case that d  is 
zero, the tracking errors 1,e  2 ,e  and 3e  converge to zero 

asymptotically by the velocity control (6). Thus, the actual 
posture ( )q t  converges to the desired reference trajectory 

( )rq t  asymptotically as time  t  goes to infinity.  

 ( )1 1 ˆˆ ˆ
su H u H f u− −= = + , ˆ ˆ( ) ( , , )c cf x R v v v= Φ ,  (16) 

 ˆ c
s c

c

eu Ke
e

ρ= + , ˆˆ Tρ ψ= Θ  (17) 

 ˆ R eT
cφΦ = Γ ,   6ˆ

ceθψΘ = Γ ∈ℜ  (18) 

 ˆ1, , , , ,
T

c c cv q v v R eψ ⎡ ⎤= Φ⎣ ⎦   (19) 

where ˆ ( )f x  is an estimate of the nonlinear robot function 
( )f x  estimated by using a FBFN, and su is the adaptive 

robust control input and stabilizing control term, Φ̂  is an 
estimate updated by (18). The dimension of the estimate  Φ̂  
is determined by the fuzzy basis functions and fuzzy rules used 
in the FBFN. Θ̂  is an estimate of the real norm-bounded 
parameter vector Θ  and updated by (18). The initial values 
ˆ (0)Θ  of the estimate vector ˆ ( )tΘ  have to be set as positive 

constants. ψ  is the bounding function obtained in the 
stability proof. The gains K , φΓ  and θΓ  are positive 

constant diagonal gain matrices.  
 

3.4 Proof of stability 
Consider a Lyapunov function candidate:  

 1 2 3V V V V= + +  (20) 

where 2 2
1 1 2 3

2

1 1( ) (1 cos ),
2

V e e e
k

= + + −  

1
2

1 1
2 2

T T
c cV e Me φ

−= + Φ Γ Φ , and 10
3

(1 )
2

TCV θ
−−= Θ Γ Θ .  

The time derivative of 1V in (20) is as follows by (6). 

 2 23
1 1 1 2 2 3 3 1 1 3

2 2

1 sin sinr
kV e e e e e e k e v e

k k
= + + = − − .  (21) 

After differentiating 2V  with respect to time,  substituting 
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it into the error dynamics (14), adopting Property 2, and 
applying it to (16)~(18), we obtain  

 1
2

ˆ ˆ( )( )T T T T
c c s c s c dV e e u e I HH R u eε τ−= − + − Φ + +  (22) 

where ˆΦ = Φ − Φ .  
From Property 3, Property 4 and Assumption 1, the 

boundedness of (22) can be obtained as  

 2
ˆ T

e c o c o c s c sV e C e R C e u e uρ≤ + Φ + −  (23) 

where maxe e dρ ρ τ= + .  
From the definition of su in (17), it can be inferred that  

 ˆ ˆs c m cu K e K eρ ρ≤ + ≤ +  (24) 

where the initial values ˆ (0)Θ  are positive constant values 
and thus ρ̂  is also positive. Here, mK K≤ , where mK  is a 

positive constant.  
Thus we can obtain the following inequality.  

 
2

2
ˆ

ˆ     ( 1)

e c o c o m c

T
o c c c

V e C e R C K e

C e e Ke

ρ

ρ

≤ + Φ +

+ − −
  (25)                             

Differentiating 3V  with respect time, we obtain  

 
( )

( )
2 3 0

1

ˆ 1 (1 )

ˆ              + 1

T
c c o c c

T
o

V V e Ke C e C e

C θ

ρ ρ
−

+ ≤ − − − + −

− Θ Γ Θ
 (26)                              

where 
( )0

1 ˆ
1 e o o m cC R C K e

C
ρ ρ⎡ ⎤= + Φ +⎣ ⎦−

.  

Since ˆˆ T T Tρ ρ ρ ψ ψ ψ= − = Θ − Θ = Θ , then  

 1
2 3 0

ˆ(1 ) (1 )T T T
c c o cV V e Ke C e C θψ −+ ≤ − − Θ − + − Θ Γ Θ . (27) 

By choosing the adaptation law (18) and using (21) and (27), 
we can conclude that  

 
2

2 3 3
1 2 3 1 1

2

sin 0Tr
c c

k v eV V V V k e e Ke
k

= + + ≤ − − − < . (28) 

It can be easily found that the velocity tracking error vector 
ce  converges to zero asymptotically when 0rv > . In the case 

that d  is zero, the tracking errors 1,e  2 ,e  and 3e  converge 
to zero asymptotically by the velocity control (6). Thus, the 
actual posture ( )q t  converges to the reference trajectory 

( )rq t  asymptotically as time t  goes to infinity. 
Remark 1: The presented GA in this work is used for the 

optimization and reduction of the fuzzy membership functions 
shown in equations (10), (11) and Fig. 3. According to the 
proposed GA, the dimension of the matrix ( , , )c cR v v v   
composed of the fuzzy membership functions is determined. 
The fuzzy membership functions used in this FBFN are all 
Gaussian functions and all bounded. The matrix ( , , )c cR v v v  is 
bounded irrespective of the number of the fuzzy membership 

functions and fuzzy rules selected by the presented GA.  
Therefore, the stability of the closed-loop control system is 

not dependent on the selection of the fuzzy rules. In other 
words, the action of GA does not affect the stability of the 
proposed adaptive robust fuzzy controller with GAs. In 
conclusion, the stability of the closed-loop control system 
including the presented GA can be guaranteed.  

 
 

4. Simulation Results 
 
The simulation for path tracking control of the wheeled 

mobile robot illustrated in Fig. 1 is performed to verify the 
proposed control scheme. In the presence of uncertainties such 
as parameter variations and disturbance, conventional PID, 
ARFC(Adaptive Robust Fuzzy Controller) and ARFC-
GA(Adaptive Robust Fuzzy Controller with GAs) have been 
conducted and compared in order to show the effectiveness of 
the proposed controller. 

The desired reference trajectory is set as following: 

 
( ) ,

25r
tx t = 2( ) sin( ),

50r
ty t π=  and 1( ) tan r

r
r

yt
x

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  

The initial posture of the reference trajectory is  

[ ](0) 0 0 1.2626 T
rq =  and the initial actual posture of the 

robot is chosen as [ ](0) 0.3 0 / 6 Tq π= − . 

In the simulation, the actuator and robot parameters are 
defined as 100,rN = 80,lN = 0.0274,brK =  0.025,blK =  

0.0274( / ),trK Nm A= 0.025( / ),tlK Nm A= 4 ,arR = Ω  

3 ,arR = Ω 10 ,m kg= 25 ,I kg m= ⋅ 0.2( ),R m= 0.05( ),r m=  
and 0.01( ).d m=   

The knowledge of the actuator and robot parameters are set 
to 70% of the real values. The disturbance is unknown in the 
control system and generated in this simulation by 

5sin(2 )d tτ = . The parameter variations are considered during 
the total control process. In this simulation, it is used that the 
mass and moment of inertia of the robot vary as follows.  
1) 0(sec) 20(sec),t≤ <  210( ),   5( );m kg I kgm= =   
2) 20(sec) 30(sec),t≤ <  220( ),   10( );m kg I kgm= =   
3) 30(sec) 40(sec),t≤ <  225( ),   15( );m kg I kgm= =   
4) 40(sec) 50(sec),t≤ ≤  230( ),   20( ).m kg I kgm= =   

In the presented FBFN, for each input variable, three 
Gaussian basis functions are defined as following: 

 

2
1( ) exp
2

j
i

j
i i

i jA
i

x xxμ
σ

⎡ ⎤⎛ ⎞−⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦  

where 0.5,0,0.5j
ix = −  and 0.2j

iσ =   
Therefore, there are totally 27 rules are used in the FBFN. 
For the GAs, we execute our experiments with the following 

parameters: population size: 100, crossover rate: 0.8, mutation 
rate: 0.01. 

The gains used in the controller are chosen as 1 0.25,k =  
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2 50,k = 3 10,k = 250 ,K I= 105000 ,IφΓ = and 70.00005IθΓ =  

 70.00005IθΓ =  where n n
nI ×∈ℜ  is an identity matrix.  

Table 1 shows the performance comparison of conventional 
PID algorithm, adaptive robust fuzzy and adaptive robust fuzzy 
with GAs.  

Fig. 5, 6 and 7 show the tracking performance for the 
proposed path tracking control of the mobile robot: (a) Path 
tracking of the robot ( )( ) ( )rq t q t→ ; (b) Control input voltages 

( )[    ]T
r lu u u= ; (c) Tracking errors of the robot posture 

( )q rE q q= − ; (d) Tracking of linear and angular velocities 

( )cv v→  when applying to the conventional PID controller, 

ARFC, and  ARFC-GA, respectively. It can be seen from the 
implementation that the PID controller cannot make the system 
converge asymptotically, because it cannot overcome the 
uncertainties and disturbances. The big errors appear when the 
mobile robot changes direction rapidly. On the contrary, the 
ARFC makes the system stable asymptotically. The tracking 
errors converge to zero as time goes to infinity. 

 
Table 1. Performance comparison. 

Velocity tracking RMS error 
Controller 

lcv (m/sec) lcw (rad/sec) 
Position tracking 
RMS error(mm) 

PID 0.0385 0.0159 98.9 
ARFC 0.0131 0.0034 29.0 

ARFC-GA 0.0073 0.0028 23.1 

 
The proposed ARFC-GA takes an advantage of the evolution 

characteristics of GAs to select the optimized fuzzy rules online 
from the product inference process of a fuzzy basis function 
network. Therefore, the tracking errors are reduced. The 
biggest aim for using GA in this controller is the optimization 
and reduction of the fuzzy membership functions through the 
given genetic scheme from the proposed ARFC.  

 

 
Fig. 5 System performance of PID controller. 

 

 
Fig. 6 System performance with ARFC. 

 

 
Fig. 7 System performance with ARFC-GA. 

 
It can be seen from the simulation results that conventional 

PID cannot overcome disturbances and parameter variations, 
while the proposed controller give the best performance over 
all. ARFC-GA is valid and robust against parameter variations 
and disturbances. 

 
 

5. Conclusions 
 
In this paper, we have developed an adaptive robust fuzzy 

controller with genetic algorithms for a wheeled mobile robot 
that asymptotically tracks a desired reference path in the 
presence of uncertainties. The robot dynamics including the 
actuator dynamics is considered in this work. The stability and 
the convergence of the tracking errors have been guaranteed 
based on the Lyapunov function theory. The different 
parameters for two actuator models in the dynamic equation 
have been considered in the proposed controller. The proposed 
control scheme does not require the accurate parameter values 
for the robot and actuator parameters. The effectiveness and 
robustness of the proposed controller has been shown through 
the simulation.  

In addition to this work, a study on control schemes 
considering the inductances of the actuators in the actuator 
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dynamics is left to a further research. 
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