• Title/Summary/Keyword: Ad Hoc On-Demand Distance Vector

Search Result 100, Processing Time 0.028 seconds

A Self-Healing Routing Technique for Mobile Ad Hoc Networks (이동 애드 혹 네트워크를 위한 자가치유 라우팅기법에 관한 연구)

  • Park, Seong-Ho;Yoon, Won-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.167-168
    • /
    • 2006
  • Mobile Ad Hoc Networks (MANETs) has the characteristics such as dynamic network topology, constrained power capacity, constrained wireless bandwidth and quality, etc. For MANETs AODV (Ad-Hoc On-Demand Distance Vector) routing protocol has been proposed. However AODV routing protocol has some inefficiency related to re-routing path establishment corresponding to node's failure. In this paper, we propose a Self-Healing Routing Technique for MANETs that uses the one-hop nodes from the failed node to set up the routing path efficiently. We also include simulation results to show the performance of our method.

  • PDF

A Multipath Routing Protocol Considering Energy in Mobile Ad-hoc Network (모바일 에드-혹 네트워크에서 에너지를 고려한 다중경로 라우팅 프로토콜)

  • Lee, Kwang-Yong;Lee, Yang-Min;Lee, Jae-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.653-656
    • /
    • 2010
  • MANET(Mobile Ad-hoc Network)에서는 노드들의 에너지가 제한적이기 때문에 에너지 효율적인 경로 설정이 중요한 이슈이다. 본 논문에서는 AOMDV(Ad-hoc On-demand Multipath Distance Vector)를 기반으로 노드의 에너지를 고려한 경로 설정과 유지 기법이 추가된 라우팅 프로토콜을 제안한다. 본 논문에서 제안한 다중경로 라우팅 프로토콜은 노드의 에너지 잔량을 고려하여 경로를 설정하기 때문에 에너지 고갈로 인한 경로 재설정 횟수를 줄일 수 있으며, 노드의 에너지 잔량 임계치를 설정하여 노드의 에너지 잔량이 임계치 이하가 되면 에러 패킷을 전송함으로서 경로 변경 및 재설정시 생기는 데이터의 손실과 전송지연을 줄일 수 있다.

A Study on Improved AODV Routing Protocol for Mobility based on ZigBee (ZigBee 기반의 무선 네트워크에서 이동성을 고려한 개선된 AODV 라우팅 프로토콜의 연구)

  • Kim, Yu-Doo;Moon, Il-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.703-709
    • /
    • 2009
  • Recently, we are using wireless system based on ZigBee technology. It solves a complicated space and frequency movement. Then, we had studied it for improved performance. So, we are must concerned about routing protocol for improvement of a weak point of physical feature. But many researchers are not focusiong on developing Routing Protocol. In this paper, we proposed improved routing protocol using AODV for wireless system based on ZigBee technology. And it is analyzed the simulation result which compare with original and improved AODV protocol based on ZigBee network.

AFLRS: An AODV-based Fast Local Repair Scheme in Ad Hoc Networks (AFLRS: 애드 혹 네트워크에서 AODV에 기반한 빠른 경로 복구 기법)

  • 서현곤;김기형;서재홍
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • A Mobile Ad Hoc Network (MANET) is a collection of wireless mobile nodes dynamically self-organizing in arbitrary and temporary network topologies without the use of any existing network infrastructure. The AODV (Ad Hoc On-Demand Distance Vector) Protocol is one of the typical reactive routing protocols, in that mobile nodes initiate routing activities only in the presence of data packets in need of a route. In this paper, we focus upon the local repair mechanism of AODV. When a link is broken, the upstream node of the broken link repairs the route to the destination by initiating a local route discovery process. The process involves the flooding of AODV control messages in every node within a radius of the length from the initiating node to the destination. In this paper, we propose an efficient local repair scheme for AODV called AFLRS (AODV-based Fast Local Repair Scheme). AFLRS utilizes the existing routing information in the intermediate nodes which have been on the active route to the destination before a link break occurs. AFLRS can reduce the flooding range of AODV control messages and the route recovery time because it can repair route through the intermediate nodes. For the performance evaluation of the proposed AFLRS, we have simulated the local repair mechanisms by using NS2 and AODV-UU. The performance results show that AFLRS can achieve faster route recovery than the local repair mechanism of AODV.

Load-Balancing and Fairness Support Mechanisms in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서의 부하 균등화 및 공평성 지원 방법)

  • Ahn Sanghyun;Yoo Younghwan;Lim Yujin
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.889-894
    • /
    • 2004
  • Most ad-hoc routing protocols such as AODV(Ad Hoc On-Demand Distance Vector) and DSR(Dynamic Source Routing) do not try to search for new routes if the network topology does not change. Hence, with low node mobility, traffic may be concentrated on several nodes, which results in long end-to-end delay due to congestion at the nodes. Furthermore, since some specific nodes are continuously used for long duration, their battery power may be rapidly exhausted. Expiration of nodes causes connections traversing the nodes to be disrupted and makes many routing requests be generated at the same time. Therefore, we propose a load balancing approach called Simple Load-balancing Approach (SLA), which resolves the traffic concentration problem by allowing each node to drop RREQ (Route Request Packet) or to give up packet forwarding depending on its own traffic load. Meanwhile, mobile nodes nay deliberately give up forwarding packets to save their own energy. To make nodes volunteer in packet forwarding. we also suggest a payment scheme called Protocol-Independent Fairness Algorithm (PIEA) for packet forwarding. To evaluate the performance of SLA, we compare two cases where AODV employs SLA or not. Simulation results show that SLA can distribute traffic load well and improve performance of entire ad-hoc networks.

A Simulation Modeling for the Effect of Resource Consumption Attack over Mobile Ad Hoc Network

  • Raed Alsaqour;Maha Abdelhaq;Njoud Alghamdi;Maram Alneami;Tahani Alrsheedi;Salma Aldghbasi;Rahaf Almalki;Sarah Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.111-119
    • /
    • 2023
  • Mobile Ad-hoc Network (MANET) is an infrastructure-less network that can configure itself without any centralized management. The topology of MANET changes dynamically which makes it open for new nodes to join it easily. The openness area of MANET makes it very vulnerable to different types of attacks. One of the most dangerous attacks is the Resource Consumption Attack (RCA). In this type of attack, the attacker consumes the normal node energy by flooding it with bogus packets. Routing in MANET is susceptible to RCA and this is a crucial issue that deserves to be studied and solved. Therefore, the main objective of this paper is to study the impact of RCA on two routing protocols namely, Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR); as a try to find the most resistant routing protocol to such attack. The contribution of this paper is a new RCA model (RCAM) which applies RCA on the two chosen routing protocols using the NS-2 simulator.

Dynamic Reverse Route for On-Demand Routing Protocol in MANET

  • Zuhairi, Megat;Zafar, Haseeb;Harle, David
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1354-1372
    • /
    • 2012
  • Route establishment in Mobile Ad Hoc Network (MANET) is the key mechanism to a successful connection between a pair of source and destination nodes. An efficient routing protocol constructs routing path with minimal time, less routing overhead and capable of utilizing all possible link connectivity. In general, most on-demand MANET routing protocols operates over symmetrical and bidirectional routing path, which is infeasible due to the inherent heterogeneous properties of wireless devices. Simulation results show that the presence of unidirectional links on a network severely affect the performance of a routing protocol. In this paper, a robust protocol independent scheme is proposed, which enable immediate rediscovery of alternative route for a path blocked by a unidirectional link. The proposed scheme is efficient; route rediscovery is locally computed, which results in significant minimization of multiple route packets flooding. Nodes may exploit route information of immediate neighbors using the local reply broadcast technique, which then redirect the control packets around the unidirectional links, therefore maintaining the end-to-end bidirectional connection. The proposed scheme along with Ad Hoc On-demand Distance Vector (AODV) and AODV-Blacklist routing protocol is investigated over three types of mobility models. Simulation results show that the proposed scheme is extremely reliable under poor network conditions and the route connectivity can be improved by as much as 75%.

An Efficient Route Discovery using Adaptive Expanding Ring Search in AODV-based MANETs (AODV 기반의 MANET에서 적응적인 확장 링 검색을 이용한 효율적인 경로 탐색)

  • Han, Seung-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.425-430
    • /
    • 2007
  • Without the aid of stationary infrastructure, maintaining routing information for all nodes is inefficient in the Mobile Ad hoc Networks(MANET). It is more efficient when every time routing information is necessary that the source node broadcasts a query message to neighbour nodes. The source node using Ad hoc On-Demand distance Vector(AODV), which is one of the routing protocols of MANET, uses the Expanding Ring Search(ERS) algorithm which finds a destination node efficiently. In order to reduce the congestion of the network, ERS algorithm does not broadcast Route REQuest(RREQ) messages in the whole network. When the timer expires, if source node does not receive Route REPly(RREP) messages from the destination node, it gradually increases TTL value and broadcasts RREQ messages. Existing AODV cost a great deal to find a destination node because it uses a fixed NODE_TRAVERSAL_TIME value. Without the message which is added in existing AODV protocols, this paper measures delay time among the neighbours' nodes by making use of HELLO messages. We propose Adaptive ERS(AERS) algorithm that makes NET_TRAVERSAL_TIME optimum which apply to the measured delay time to NODE_TRAVERSAL_TIME. AERS suppresses the unnecessary messages, making NET_TRAVERSAL_TIME optimum in this paper. So we will be able to improve a network performance. We prove the effectiveness of the proposed method through simulation.

Impact of Delayed Control Message in AODV Protocol

  • Miao, Haoran;Lee, Ye-Eun;Kim, Ki-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.82-83
    • /
    • 2022
  • Ad-hoc On-demand Distance Vector (AODV), is one of well-designed routing protocols in mobile ad hoc networks. It supports the functionality of node mobility modules through multiple control messages to create and maintain paths for data transfer. Even though a number of studies have been conducted to achieve rapid discovery of paths across the network, but few have focused on impact of control messages. This paper proposes a method to adjust the transmission time of messages used in path recovery according to their individual characteristics. Simulation results show the improved performance of the proposed algorithm rather than traditional AODV routing protocol.

A Node-disjoint Multipath Discovery Method by Local Route Discovery based on AODV (AODV기반의 지역경로탐색을 이용한 노드 비중첩 다중 경로 검색 기법)

  • Jin, Dong-Xue;Kim, Young-Rag;Kim, Chong-Gun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.87-94
    • /
    • 2007
  • In mobile ad hoc networks the most popular on demand routing protocols are the Dynamic Source Routing (DSR) protocol and the Ad hoc On demand Distance Vector (AODV) routing protocol. These and other representative standard routing protocols are designed to find and maintain only a single path. Whenever there is a link break on the active route, source node has to invoke a route discovery process from the beginning and it causes a lot of overhead. Multipath routing protocols, which can alleviate these problems by establishing multiple alternative paths between a source and a destination, are widely studied. In this paper we propose a node disjoint multipath discovery technique based on AODV local route discovery. This technique can find and build completely separated node disjoint multi paths from a source to a destination as many as possible. It will make routing more robust and stable.