• 제목/요약/키워드: Active control

검색결과 6,356건 처리시간 0.035초

전자기력을 이용한 능동제진에 관한 연구 (A Study on Active Vibration Isolation Using Electro-Magnetic Actuator)

  • 손태규;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

복수조화음에 대한 능동소음제어 시뮬레이션 (Simulation of Active Noise Control on Harmonic Sound)

  • 권오철;이경태;이해진;양인형;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.737-742
    • /
    • 2007
  • The method of the reducing duct noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequencies (below 500Hz) and is limited by the space. On the other hand, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases slightly so it may delay the convergence time when the FXLMS algorithm is applied to the active control of duct noise. Thus the Co-FXLMS algorithm was developed to improve the control performance in order to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing duct noise.

  • PDF

빌딩간 연결을 통한 복합제어시스템의 최적설계 (Optimal Design of Hybrid Control System through Inter-Building Connection)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.

ActiveX 컨트롤 패드를 이용한 동적홈페이지의 설계와 구현 사례 (Case Study of Building Dynamic Homepage Using ActiveX Control Pad)

  • 우원택
    • 한국산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.108-118
    • /
    • 2003
  • 본 연구는 마이크로소프트사가 개발한 ActiveX 컨트롤 기술을 이용하여 동적인 홈페이지를 제작하는 사례를 설계하고 구현 해 봄으로써 ActiveX 컨트롤의 사용가치와 이의 활용방안을 알아보고자 함에 있다. 이를 위해 첫째, 비주얼베이직과 자바를 이용한 웹 프로그래밍 기술과 ActiveX 컴포넌트의 기능을 알아보고 둘째, 웹 프로그래밍의 역사와 ActiveX 프로그램과의 관련성과 현재 대두되고 있는 XML 웹서비스 기술과의 비교를 통하여 웹 프로그래밍 기술을 이해하고 셋째, ActiveX 컨트롤 패드를 이용하여 실제로 동적 홈페이지를 구성하는 사례를 설계하고 구현해 봄으로써 이의 활용가치를 알아보고자 하였다. 연구결과 자바 애플릿에 대응하는 기술로 마이크로소프트가 OLE기술을 확장하여 만든 ActiveX컨트롤은 프로그램의 재사용, 개발시간 단축과 프로그램의 기능과 품질향상에 기여하여 인터넷 내지 인트라넷용 프로그램 개발 등에 쉽게 이용될 수 있는 가능성을 보여주었으나 플랫폼 독립적이지 못하고 윈도우에서만 사용 가능한 제한점을 보여주었다.

  • PDF

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

슬라이딩 모드제어 기법을 적용한 건물의 능동제어 실험 (Experimental Study on the Active Control of Building Using Sliding Mode Control Method)

  • 김성춘;박정근;민경원;정진욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.431-435
    • /
    • 2001
  • The active structural control has emerged as structural safety of structures against natural loadings such as earthquake and wind loadings. Of many control algorithms, Sliding-Mode Control (SMC) can design both linear controller and nonlinear controller. The robustness against parameter variations as well as excitation uncertainties that is imparted to the SMC due to its nonlinear control action, could make SMC an attractive control algorithm when dealing with structures where the external excitation constitutes the main uncertainty in the system. This paper demonstrates experimentally the efficacy of the SMC algorithm based on the active mass driver system in reducing the response of seismically excited buildings. The SMC control strategy is verified with the experimental study on the one-story building model equipped with the active mass driver.

  • PDF

Complete decentralized displacement control algorithm

  • Ruiz-Sandoval, M.E.;Morales, E.
    • Smart Structures and Systems
    • /
    • 제11권2호
    • /
    • pp.163-183
    • /
    • 2013
  • Control systems have been greatly studied in recent years and can be classified as: passive, active, semi-active or hybrid systems. Most forms of control systems have been applied in a centralized manner where all the information is sent to a central node where control the algorithm is then calculated. One of the possible problems of centralized control is the difficulty to scale its application. In this paper, a completely decentralized control algorithm is analytically implemented. The algorithm considers that each of the control systems makes the best decision based solely on the information collected at its location. Semi-active control is used in preference to active control because it has minimal energy consumption, little to no possibility of destabilization, a reduction in the possibility of data saturation, and a reduction in the response time in comparison to centralized control.

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.

역전파 알고리즘에 의한 덕트내 소음의 능동제어 (Active Control of Sound in a Duct System by Back Propagation Algorithm)

  • 신준;김흥섭;오재응
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2265-2271
    • /
    • 1994
  • With the improvement of standard of living, requirement for comfortable and quiet environment has been increased and, therefore, there has been a many researches for active noise reduction to overcome the limit of passive control method. In this study, active noise control is performed in a duct system using intelligent control technique which needs not decide the coefficients of high order filter and the mathematical modeling of a system. Back propagation algorithm is applied as an intelligent control technique and control system is organized to exclude the error microphone and high speed operational device which are indispensable for conventional active noise control techniques. Furthermore, learning is performed by organizing acoustic feedback model, and the effect of the proposed control technique is verified via computer simulation and experiment of active noise control in a duct system.

DSP를 이용한 능동소음 제어시스템의 개발 (Development of Active Noise Control System using DSP)

  • Kim, H.S.;Shin, J.;Oh, J.E.
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.108-113
    • /
    • 1994
  • Active noise control technique has superior performance in low frequency ranges(50 .approx. 400Hz) to the conventional passive noise control technique. For the feasibility of active noise control, it is required to develop a controller which can implement control algorithm on real-time. In this study, therefore, real-time controller is developed using TMS320c25, high speed digital processor. Unlike conventional DSP board of complete ADD ON type, it is possible for the developed controller to interface with the other computer system easily by series communication for the convenience of program development. Furthermore it is designes to be separated readily as a control device. Active noise control of duct system is implemented ti evaluate a performance of developed device. Active noise control of duct system is implemented to evaluate a performance of developed controller using filtered-x LMS algorithm.

  • PDF