• Title/Summary/Keyword: Accumulation, Resistance

Search Result 304, Processing Time 0.029 seconds

Impedance Parameter Variations at Intravenous (IV) Infiltration Using Bioelectrical Impedance: A Pilot Study

  • Kim, Jaehyung;Lee, Mansup;Baik, Seungwan;Kim, Gunho;Hwang, Youngjun;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1678-1688
    • /
    • 2017
  • Infiltration is one of detrimental problems occurring in nursing or medical settings. Early detection of infiltration is essential to minimize the risk of injury from infiltration. To perform a preliminary study on the point of care and automated infiltration detection system, bioelectrical impedance was investigated using bioelectrical impedance analyzer. We would like to report experimental results that allow impedance parameters to effectively distinguish infiltration. Electrodes were attached to both sides of the transparent dressing on the fusion site where IV solution was being infused. Then, impedance parameters before and after infiltration were measured as a function of time and frequency. The experimental results are as follows. After infiltration was intentionally induced by puncturing the vein wall with a needle, the resistance gradually decreased with time. That is, when an alternating current having a frequency of 20 kHz was applied to the electrodes, the resistance gradually decreased with time, reflecting the accumulation of IV solution in the extracellular fluid since the current could not pass through the cell membrane. Impedance parameters and equivalent circuit model for human cell were used to examine the mechanism of current flow before and after infiltration, which could be used for early detection of infiltration.

Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

  • Hossain, Mohammad Tofajjal;Khan, Ajmal;Chung, Eu Jin;Rashid, Md. Harun-Or;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.228-241
    • /
    • 2016
  • In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension ($2.0{\times}10^7cfu/ml$) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.

Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice

  • Cho, Su-Jung;Jung, Un Ju;Kim, Hye-Jin;Ryu, Ri;Ryoo, Jae Young;Moon, Byoung Seok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic ${\beta}$-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic ${\beta}$-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi;Asai, Shuta;Yoshioka, Miki;Kobayashi, Michie
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.321-329
    • /
    • 2009
  • Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

A Study in the High Temperature Wear and Thermal Shock Resistance of the Functional Gradient Thermal Barrier Coating by Air Plasma Spray with ZrO$_2$ (APS법에 의한 경사기능성 지르코니아 열장벽 피막의 열충격 및 고온내마모 특성에 관한 연구)

  • 한추철;박만호;송요승;변응선;노병호;이구현;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.272-280
    • /
    • 1997
  • The Thermal Barrier Coation(TBC) to improve the that barrier and wear resistant propenrty in high temperature ofthe aircraftength between the accumlation of the aircraft engine and the automobile engine has usually the two layer structure. One is a creamic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers should be peeled off because of the accumulation of the thermal stress by the differance of the thermal expantion coefficient between metal and ceramics in a hrat cyclic environment. In this study, the intermediate layer by plasm spray process was introduced to reduce the thermal stress. The powders of plasm spray coating were the Yttria Stabilized Zirconia (YSZ), the Magnesia Stabillized Zirconia(MSZ) and NiCrAlY. the intermediate layer was sprayed with the powders of the bond cast for the purpose of test were executed. The high temperature wear resistance tends to decreasnceee wear and thermal shock test were exeucuted. The high temperature were resistance of the YSZ TBC is better that of the MSZ TBC. The wearrsistance tends to decrease accoring to incresing the temperature between $400^{\circ}C$to $600^{\circ}C$. The thermal shock life of the 3 layer TBC with YSZ top casting was the most outstanding thermal shock rsisstasnce. This means that the intermediate layer should play an importnat roll to alleviate the diffrerence of the thermal expansion coef frcients between metallic layer and cermics layer.

  • PDF

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

  • Poudel, Ajit;Navathe, Sudhir;Chand, Ramesh;Mishra, Vinod K.;Singh, Pawan K.;Joshi, Arun K.
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.287-300
    • /
    • 2019
  • Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide ($H_2O_2$), superoxide ($O_2{^-}$) and hydroxyl radical ($OH^-$) were studied after inoculation under field conditions for two consecutive years. $H_2O_2$ significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and $H_2O_2$ to the Area Under Disease Progress Curve (AUDPC). The production of $H_2O_2$ was higher in the resistant genotypes than susceptible ones. The $O_2{^-}$ and $OH^-$ positively correlated with AUDPC but negatively with lignin content. This study illustrates that $H_2O_2$ has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. $H_2O_2$ associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

Opuntia humifusa stems rich in quercetin and isorhamnetin alleviate insulin resistance in high-fat diet-fed rats

  • Young-Min Lee;Yeonjeong Choi;Eunseo Kim;In-Guk Hwang;Yoona Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.498-510
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity, characterized by abnormal fat accumulation and metabolic disturbances, presents a significant health challenge. Opuntia humifusa Raf., commonly known as Korean Cheonnyuncho, is rich in various beneficial compounds and has demonstrated antioxidant and anti-inflammatory effects. However, its potential impact on glucose and lipid metabolism, particularly in obese rats, remains unexplored. We aimed to investigate whether O. humifusa stems and fruits could beneficially alter glucose metabolism and lipid profiles in a rat model of high-fat diet (HFD)-induced obesity. MATERIALS/METHODS: Thirty-two rats were allocated into 4 groups: normal diet (NF), HFD control (HF), HFD treated with 2% O. humifusa stems (HF-OS), and HFD treated with 2% O. humifusa fruits (HF-OF). Experimental diets were administered for 6 weeks. At the end of the treatment, liver and fat tissues were isolated, and serum was collected for biochemical analysis. The major flavonoid from O. humifusa stems and fruits was identified and quantified. RESULTS: After 6 weeks of treatment, the serum fasting glucose concentration in the HF-OS group was significantly lower than that in the HF group. Serum fasting insulin concentrations in both HF-OS and HF-OF groups tended to be lower than those in the HF group, indicating a significant improvement in insulin sensitivity in the HF-OS group. Additionally, the HF-OS group exhibited a tendency towards the restoration of adiponectin levels to that of the NF group. CONCLUSION: The 2% O. humifusa stems contain abundant quercetin and isorhamnetin, which alter fasting blood glucose levels in rats fed a HFD, leading to a favorable improvement in insulin resistance.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

MICROMORPHOLOGICAL ASPECTS OF HARDWOODS DETERIORATED IN THE SEA-WATER FROM WRECKED SHIP'S TIMER (수침목재의 재질분석에 관한 연구-미시형태적 변화를 중심으로)

  • KIM, Yoon-Soo;CHOI, Kwang-Nam
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.246-264
    • /
    • 1986
  • Micoromorphological alterations of sea-waterlogged woods by marinemicro-oragnisms were investigated by the light and scanning electron microscopy as a part of serial investigations on the shipwrecked materials which were excavated at the sea shore of Wando-Kun, southern coast of Korea in 1984.Deterioration of sea-waterlogged wood by marine microorganisms were varied with the wood species. The degree of deterioration even in the same wood specieswas different according to the part where it was in mud of sea-water. However, the resistance of Torreya nucifera over the marine organisms was marked. Deterioration in cell wall may be classified into three types; thinning of cell wall, separation of secondary wall from compound middle lamella and tunneling of cell wall. Thinning and separation were frequently observed, while the tunneling was rare. Among the wood cell elements of hardwoods, vessel wall was the least deteriorated. The difference degree of degradation of cell wall constituents and the accumulation of inorganic substances in cell lumen indicate that some factors to be considered for the conservation treatment were discussed. The kinds of marine microorganisms invading and/or inhabiting in wrecked wooden ship were also discussed.

  • PDF