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ABSTRACT

BACKGROUND/OBJECTIVES: Obesity, characterized by abnormal fat accumulation and 
metabolic disturbances, presents a significant health challenge. Opuntia humifusa Raf., 
commonly known as Korean Cheonnyuncho, is rich in various beneficial compounds and has 
demonstrated antioxidant and anti-inflammatory effects. However, its potential impact on 
glucose and lipid metabolism, particularly in obese rats, remains unexplored. We aimed to 
investigate whether O. humifusa stems and fruits could beneficially alter glucose metabolism 
and lipid profiles in a rat model of high-fat diet (HFD)-induced obesity.
MATERIALS/METHODS: Thirty-two rats were allocated into 4 groups: normal diet (NF), HFD 
control (HF), HFD treated with 2% O. humifusa stems (HF-OS), and HFD treated with 2% O. 
humifusa fruits (HF-OF). Experimental diets were administered for 6 weeks. At the end of 
the treatment, liver and fat tissues were isolated, and serum was collected for biochemical 
analysis. The major flavonoid from O. humifusa stems and fruits was identified and quantified.
RESULTS: After 6 weeks of treatment, the serum fasting glucose concentration in the HF-OS 
group was significantly lower than that in the HF group. Serum fasting insulin concentrations 
in both HF-OS and HF-OF groups tended to be lower than those in the HF group, indicating 
a significant improvement in insulin sensitivity in the HF-OS group. Additionally, the HF-OS 
group exhibited a tendency towards the restoration of adiponectin levels to that of the NF group.
CONCLUSION: The 2% O. humifusa stems contain abundant quercetin and isorhamnetin, 
which alter fasting blood glucose levels in rats fed a HFD, leading to a favorable improvement 
in insulin resistance.
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INTRODUCTION

Obesity has emerged as a burgeoning public health concern due to its escalating prevalence 
worldwide, particularly in developed countries, over the past decades. According to the 2022 
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report by the World Health Organization [1], the global prevalence of obesity has nearly 
tripled from 1975 to 2016. Notably, the American and European regions have exhibited the 
highest prevalence rates of obesity, with figures soaring from 6.8% in 1980 to 22.4% in 2019. 
In Europe, a staggering 60% of adults are either overweight or obese [1].

Defined as a chronic health condition, obesity entails abnormal or excessive accumulation 
and distribution of body fat, resulting from a disruption in the energy balance between 
energy input and output [2,3]. Overweight is classified as a body mass index (BMI) exceeding 
25 kg/m2, while obesity is indicated by a BMI surpassing 30 kg/m2 [3,4]. Characterized 
by weight gain and metabolic disturbances, obesity significantly augments the risk of 
various comorbidities, including insulin resistance, metabolic syndrome, dyslipidemia, 
hypertension, type 2 diabetes mellitus, non-alcoholic fatty liver disease (NAFLD), 
cardiovascular disease, depression, cognitive impairment, and cancer [5-14]. Recognized as a 
leading cause of preventable mortality [15], obesity markedly impacts both the quality of life 
[16,17] and healthcare costs [18-20] of affected individuals.

Opuntia humifusa Raf., commonly known as the eastern prickly pear or Indian fig, is a 
cactus belonging to the genus Opuntia [21]. It is cultivated worldwide, particularly in the 
eastern United States, Mississippi, northeastern Mexico, Mediterranean regions, and the 
southern regions of the Republic of Korea [21]. O. humifusa Raf., also referred to as Korean 
Cheonnyuncho, is primarily grown in Korea and exhibits tolerance to low temperatures below 
−20°C during winter [22]. O. humifusa Raf. was high in dietary fiber (48.5%), total polyphenols, 
flavonoids, mannitol, polysaccharides, vitamins, and minerals [23-25]. Compared to other 
cactus species, high levels of total flavonoids, phenolic compounds (ranging from 4 to 90 
mg/mL), and vitamin C (approximately 260.94 mg per 100 g) are observed in the stems of O. 
humifusa Raf. along with the more potent antioxidant capacities against free radical diphenyl-1-
picrylhydrazyl. Stems contain higher levels of major minerals than fruits, whereas levels of Fe, 
Se, vitamin C, and vitamin E are higher in fruits than in stems [25,26].

Antioxidant and anti-inflammatory effects of O. humifusa Raf. have been reported in vitro 
[27-30]. Rats with streptozotocin-induced diabetes orally treated with powdered O. humifusa 
stems (150 mg/kg/d, 250 mg/kg/d, and 500 mg/kg/d) for 7 weeks showed significant 
reductions in fasting blood glucose, total cholesterol (TC), triglyceride (TG), and low-density 
lipoprotein cholesterol (LDL-C) compared to untreated diabetic rats [26]. However, no 
studies have demonstrated the effects of O. humifusa Raf. in glucose and lipid metabolism 
in insulin-resistant rats fed a high-fat diet (HFD). Given the evidence for its antioxidant and 
anti-inflammatory effects, we hypothesized that O. humifusa Raf. improved glucose and lipid 
metabolism. To assess this hypothesis, we aimed to investigate the effects of O. humifusa Raf. 
on blood glucose and lipid levels in HFD-fed obese rats.

MATERIALS AND METHODS

Preparation for O. humifusa Raf.
O. humifusa stems and fruits were collected in October 2022 from a field in Changnyeong 
County, South Gyeongsang Province, Korea. The stems and fruits were freeze-dried (Ilshin 
Co., Dongducheon, Korea) and refrigerated until use.
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Extraction and UPLC-DAD-QToF/MS Analysis of stems and fruits of O. humifusa
Flavonoids were extracted from the stems and fruits of O. humifusa, as described by Lee et al. 
[31]. With reference to the method presented by Kim et al. [32], 0.5 g of the powdered sample 
was extracted with mixed solvents (methanol:water:formic acid = 50:45:5, v/v/v, 10 mL) using 
an orbital shaker (for 30 min at 200 rpm) and centrifuged for 15 min at 2016 × g and 4°C 
(LABOGENE 1580R; Bio-Medical Science Co., Seoul, Korea). The collected supernatant was 
filtered via a 0.2 µm PVDF syringe filter (Thermo Fisher Scientific Inc., Waltham, MA, USA). 
Each filtrate (0.5 mL) and Quercetin-3,5,7,3',4'-pentamethylester (internal standard [ISTD], 50 
ppm, 0.5 mL) were further diluted with distilled water to obtain a final volume of 7 mL to offer 
improved recovery during solid phase extraction. First, a C18 cartridge (Hypersep C18 500 
mg; Thermo Fisher Scientific Inc.) was conditioned with methanol (3 mL) and distilled water 
(5 mL) for the initial activation. The previously diluted filtrate and ISTD were sequentially 
loaded onto an activated cartridge and washed with 5 mL of distilled water. Finally, the target 
compounds were slowly eluted from the loaded cartridge using 1% formic acid in methanol 
(5 mL). The semi-purified flavonoid eluate was completely concentrated using N2 gas and 
redissolved in an extraction solvent (0.5 mL) prior to UPLC-DAD-QToF/MS analysis.

Identification and quantification of flavonoid derivatives
The qualitative analysis of flavonoid derivatives of O. humifusa stems and fruits was performed 
using a pre-established flavonoid database (‘RDA DB 1.0- Flavonoids’ completed in 2016, 
Korea, pp. 481-488). Among the identified flavonoid derivatives, quercetin 3-O-rutinoside, 
quercetin 3-O-galactoside, quercetin 3-O-glucoside, isorhamnetin 3-O-rutinoside, isorhamnetin 
3-O-glucoside, quercetin, and isorhamnetin were purchased, and their contents were quantified 
based on the calibration curve. Isorhamnetin 3-O-galactoside-4'-O-glucoside, isorhamnetin 
3,4'-di-O-glucoside, isorhamnetin 3-O-rutinoside-4'-O-glucoside, isorhamnetin 3-O-robinobioside, 
and isorhamnetin 3-O-galactoside contents were determined by comparing the area of ​​the ISTD 
quercetin-3,5,7,3',4'-pentamethylester 50 ppm, 0.5 mL) with the area of ​​each component in a 1:1 
ratio. The contents of flavonoid derivatives were expressed as µg/g dry weight (DW).

Test animals
Five-week-old male Sprague-Dawley rats (n = 32) were purchased from Central Lab Animal 
Inc. (Seoul, Korea). The animals were housed individually and maintained under controlled 
conditions (room temperature, 22 ± 2°C; relative humidity, 55 ± 5%; dark cycle, 12 h/12 h).

Experimental diets
The composition of the experimental diet is shown in Table 1. Food and water were provided ad 
libitum throughout the experiments. To help them adapt to the breeding conditions, the rats 
were fed a chow diet with ad libitum access to water for one week. After a one-week adaptation 
period, the rats were divided into 4 groups for a 6-week study period: (1) a normal diet control 
(NF) group (n = 8); (2) a HFD control (HF) group (n = 8); (3) an HFD group (n = 8) treated with 
2% O. humifusa stems (HF-OS) (n = 8); (4) an HFD group (n = 8) treated with 2% O. humifusa fruits 
(HF-OF) (n = 8). All experimental designs and procedures were approved by the Institutional 
Animal Care and Use Committee of Gyeongsang National University (GNU-221011-R0131-01).

Sampling procedures
At the end of the experimental period (6 weeks), the rats were fasted for 12 h, and 
anesthetized with CO2. Blood was drawn from the abdominal aorta vein. The serum 
was isolated by centrifuging the blood at 3,000 rpm for 20 min at 4°C. Small pieces of 
hepatic tissue excised from the dissected abdomen were immediately immersed in an 
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RNA stabilization reagent (Qiagen, Valencia, CA, USA) for real-time quantitative reverse 
transcription polymerase chain reaction (RT-PCR). Harvested hepatic and adipose tissues 
were rinsed with cold phosphate-buffered saline and weighed. The residue was frozen 
immediately in liquid nitrogen and stored in a freezer at −70°C.

Biochemical analysis
Commercially available kits (Asan Pharmaceutical Co., Seoul, Korea) were used to determine 
the serum concentrations of high-density lipoprotein cholesterol (HDL-C), LDL-C, TC, TG, 
glucose, alkaline phosphatase (ALP), glutamic oxaloacetic transaminase (GOT), and glutamic 
pyruvic transaminase (GPT), according to the manufacturer’s instructions. The serum 
concentrations of insulin and adiponectin were measured using commercial assay kits (Crystal 
Chem, Chicago, IL, USA) according to the manufacturer’s instructions. The homeostasis 
assessment of insulin resistance (HOMA-IR) was performed using the following formula:

HOMA-IR = [Fasting Insulin (µU/mL) × Fasting Plasma Glucose (mg/dL)]/405

RNA isolation
The RNeasy Protect Mini Kit (Qiagen, Hilden, Germany) was used for total RNA isolation 
from hepatic tissues according to the manufacturer’s instructions. The quantity and purity of 
RNA were determined based on the absorbance at 260 and 280 nm. RNA samples were stored 
at −70°C until use.

Real-time RT-PCR
Real-time RT-PCR was conducted using the SYBR Green PCR Master Mix (Qiagen) and a 
CFX Opus 96 Real-time PCR System (Bio-Rad Laboratories, Hercules, CA, USA) according to 
the manufacturer’s introductions, in order to investigate the expression of glucose and lipid 
metabolism-related genes. The extracted RNA was used to synthesize cDNA according to the 
manufacturer’s instructions. A QuantiTect Reverse Transcription Kit (Qiagen) was used to 
synthesize cDNA from the extracted RNA.

The primer sequences for β-actin, acetyl-coenzyme A acetyltransferase 2 (ACAT2), 
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), sterol regulatory element 
binding protein 2 (SREBP-2), phosphoenolpyruvate carboxykinase (PEPCK), adiponectin 
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Table 1. Composition of experimental diets (g/kg diet)
Composition NF HF HF-OS HF-OF
Cornstarch 397.486 277.486 257.486 257.486
Casein 200 200 200 200
Dextrinized cornstarch 132 132 132 132
Sucrose 100 100 100 100
Soybean oil 70 - - -
Lard - 180 180 180
Cholesterol - 10 10 10
Fiber 50 50 50 50
Mineral mixture (AIN-93G-MX) 35 35 35 35
Vitamin mixture (AIN-93-VX) 10 10 10 10
L-cysteine 3 3 3 3
Choline bitartrate 2.5 2.5 2.5 2.5
TBHQ 0.014 0.014 0.014 0.014
O. humifusa stems - - 20 -
O. humifusa fruits - - - 20
NF, normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. humifusa stems; HF-OF, high-fat diet with 
2% O. humifusa fruits; TBHQ, tert-butylhydroquinon.



receptor protein 2 (AdipoR2), peroxisome proliferator-activated receptor alpha (PPAR-α), 
and interleukin-1 beta (IL-1β) are as follows (forward and reverse, respectively): β-actin: 
5′-AGCGTGGCTACAGCTTCACC-3′, 5′-TGCCACAGGATTCCATACCC-3′; ACAT2: 
5′-CAGGACACCCAGCATCAGG-3′, 5′-AGGATGGACAGCAGCAGAGC-3′; HMGR: 
5′-GGATGCAGCACAGAATGTGG-3′, 5′- ACGCCCCTTGAACACCTAGC-3′; SREBP-2: 
5′-CGCAACCAGCTTTCAAGTCC-3′, 5′- AGCGACTGTCTGCACTGTGG-3′; PEPCK: 
5′-GAAAGTTGAATGTGTGGGTGAT-3′, 5′- TTCTGGGTTGATGGCCCTTA-3′; AdipoR2: 
5′-CATGTTTGCCACCCCTCAGTA-3′, 5′- ATGCAAGGTAGGGATGATTCCA-3′; PPAR-α: 
5′-AAGGCTATGCCAGGCTTTGC-3′, 5′- GATGTCGCAGAATGGCTTCC-3, and IL-1β: 
5′-CACCTTCTTTTCCTTCATCTTTG -3′, 5′- GTCGTTGCTTGTCTCTCCTTGTA -3′. The PCR 
cycling conditions for the 2-step RT-PCR were as follows: pre-denaturation at 95°C for 15 min, 
followed by 45 cycles of 94°C for 15 s, 58°C for 30 sec and 72°C for 30 s. Relative quantification 
values were calculated by analyzing the changes in SYBR green fluorescence during PCR, 
according to the manufacturer’s instructions. The Ct values obtained were the threshold cycles 
at which a statistically significant increase in the SYBR green emission intensity was noted. 
Using the 2−ΔΔCt method, the changes (in orders of magnitude) relative to the control were 
calculated. Ct values were normalized to those for the housekeeping gene, β-actin, and the ΔCt 
values of the HFD groups were normalized to the mean ΔCt values of the NF controls. Melting-
curve analysis was performed at 72–95°C to confirm the specificity of the PCR assay.

Statistical analyses
Data are expressed as mean ± SD. Statistical comparisons were performed using one-way 
analysis of variance followed by Duncan’s multiple range test. Values were considered 
statistically significant at P < 0.05.

RESULTS

Identification of flavonoids from O. humifusa stems and fruits
The major flavonoids from O. humifusa stems and fruits were identified (Fig. 1, Table 2). 
Twelve types of aglycones and their glycosides were detected in O. humifusa stems and fruits. 
Aglycones of quercetin and isorhamnetin were detected. Seven types of isorhamnetin 
glycosides and 3 types of quercetin glycosides were identified. The total flavonoid content 
in O. humifusa stems and fruits was 980.43 and 606.67 µg/g DW, respectively. The content of 
isorhamnetin derivatives was 907.66 µg/g DW (92.6%) in stems and 559.79 µg/g DW (92.3%) 
in fruits, while the corresponding content of quercetin derivatives for the cultivars was 72.77 
µg/g DW (7.42%) and 46.88 µg/g DW (7.73%), respectively. Isorhamnetin-3-O-rutinoside was 
found at significantly high levels in the stems (395.20 ± 5.05 µg/g DW) and fruits (179.29 ± 
1.48 µg/g DW). Isorhamnetin-3-O-glucoside was 21 times more abundant in stems (193.45 ± 
2.76 µg/g DW) than in fruits (9.14 ± 0.83 µg/g DW).

Body weight, food intake, and organ weight
Table 3 presents the body weight, food intake, and food efficiency ratio. The experimental 
groups exhibited no significant differences in initial body weight, ranging between 190.4 g 
and 191.4 g. Following 6 weeks on the designated diets, rats in the HFD-fed groups exhibited 
significantly higher weights compared to the NF group. However, the HF-OS and HF-OF 
groups did not display significant loss in comparison to the HF group. Although intake varied 
significantly among the HFD groups compared to the NF group, the HF, HF-OS, and HF-OF 
groups demonstrated similar intakes.
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Table 4 displays the liver and fat tissue weights of the rats. The HFD-fed groups exhibited 
significant increases in both liver and adipose weights when compared to the NF group. 
Supplementation with OS or OF did not lead to significant decreases in liver weight or fat 
tissue weight.

Serum lipid levels
Table 5 presents the serum levels of TG, TC, HDL-C, and LDL-C. TC and TG levels did not 
exhibit significant differences in the HFD group compared to the NF group. However, the 
HFD resulted in a significant reduction in HDL-C levels and an increase in LDL-C levels 
compared to the NF group. While supplementation with OS or OF did not impact HDL-C 
levels, there was a tendency for decreased LDL-C levels in the HF-OF groups.

Fasting serum glucose, insulin, and adiponectin levels
Table 6 illustrates the effects of OS and OF on fasting serum glucose, insulin, and 
adiponectin levels. Fasting glucose levels tended to be higher in the HF group than in the 
NF group. However, the HF-OS group exhibited significantly lower fasting glucose levels 
compared to the HF group. Fasting insulin levels were significantly elevated in the HF 
group compared to the NF group. Both the HF-OS and HF-OF groups showed a tendency 
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Fig. 1. Ultra-high performance liquid chromatography coupled to a diode array detector (350 nm) chromatograms of flavonoids in O. humifusa stems (A) and 
fruits (B). 1: Isorhamnetin 3-O-galactoside-4'-O-glucoside; 2: Isorhamnetin 3,4'-di-O-glucoside; 3: Isorhamnetin 3-O-rutinoside-4'-O-glucoside; 4: Quercetin 
3-O-rutinoside; 5: Quercetin 3-O-galactoside; 6: Quercetin 3-O-glucoside; 7: Isorhamnetin 3-O-robinobioside; 8: Isorhamnetin 3-O-rutinoside; 9: Isorhamnetin 
3-O-galactoside; 10: Isorhamnetin 3-O-glucoside; 11: Quercetin; 12: Isorhamnetin. 
ISTD, internal standard.



toward decreased fasting insulin levels relative to the HF group. Consequently, a significant 
improvement in the HOMA-IR score was observed in the HF-OS group. Adiponectin levels 
were notably lower in the HF group compared to the NF group. However, the HF-OS group 
exhibited a tendency to restore adiponectin levels to those observed in the NF group.
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Table 2. Mass spectrometric data and their contents (μg/g dry weight) of isolated 12 flavonoids from O. humifusa stems and fruits
Peak 
No.

Compounds RT (min) 
UV

Molecular 
formula

[M+H]+ Error 
(ppm)

MW Adducts and fragment ions (m/z)1) Stems Fruits

1 Isorhamnetin  
3-O-galactoside-4'-O-glucoside

15.614 C28H32O17 641.1714 0.3 640 679[M+K]+, 663[M+Na]+, 641[M+H]+, 
479[M+H-Gal or Glu]+, 317[M+H-Gal-Glu]+

30.12 ± 2.11 116.87 ± 5.78

2 Isorhamnetin  
3,4'-di-O-glucoside

16.052 C28H32O17 641.1717 0.7 640 679[M+K]+, 663[M+Na]+, 641[M+H]+, 
479[M+H-2Glu]+, 317[M+H-Gal-Glu]+

61.03 ± 13.64 114.08 ± 5.40

3 Isorhamnetin  
3-O-rutinoside-4'-O-glucoside

16.161 C34H42O21 787.2298 0.9 786 825[M+K]+, 809[M+Na]+, 787[M+H]+, 
641[M+H-Rham]+, 625[M+H-Glu]+, 479[M+H-

Rham-Glu]+, 317[M+H-Rham-2Glu]+

85.19 ± 1.20 83.80 ± 4.12

4 Quercetin 3-O-rutinoside 17.816 C27H30O16 611.1615 1.4 610 649[M+K]+, 633[M+Na]+, 611[M+H]+, 
465[M+H-Rham]+, 303[M+H-Rham-Glu]+

30.14 ± 0.96 21.70 ± 3.76

5 Quercetin 3-O-galactoside 17.977 C21H20O12 465.1031 0.8 464 503[M+K]+, 487[M+Na]+, 465[M+H]+, 
303[M+H-Gal]+

18.07 ± 0.63 10.27 ± 1.30

6 Quercetin 3-O-glucoside 18.398 C21H20O12 465.1034 1.4 464 503[M+K]+, 487[M+Na]+, 465[M+H]+, 
303[M+H-Glu]+

9.18 ± 0.11 7.15 ± 0.84

7 Isorhamnetin 3-O-robinobioside 20.028 C28H32O16 625.1768 0.8 624 663[M+K]+, 647[M+Na]+, 625[M+H]+, 
479[M+H-Rham]+, 317[M+H-Rham-Gal]+

61.07 ± 2.66 36.31 ± 2.89

8 Isorhamnetin 3-O-rutinoside 20.379 C28H32O16 625.1766 0.5 624 663[M+K]+, 647[M+Na]+, 625[M+H]+, 
479[M+H-Rham]+, 317[M+H-Rham-Glu]+

395.20 ± 5.05 179.29 ± 1.48

9 Isorhamnetin 3-O-galactoside 20.551 C22H22O12 479.1189 1.0 478 517[M+K]+, 501[M+Na]+, 479[M+H]+, 
317[M+H-Gal]+

45.77 ± 0.62 16.17 ± 2.75

10 Isorhamnetin 3-O-glucoside 20.998 C22H22O12 479.1189 1.0 478 517[M+K]+, 501[M+Na]+, 479[M+H]+, 
317[M+H-Glu]+

193.45 ± 2.76 9.14 ± 0.83

11 Quercetin 24.072 C15H10O7 303.0502 0.9 302 341[M+K]+, 303[M+H]+ 15.38 ± 1.98 7.76 ± 0.16
12 Isorhamnetin 25.523 C16H12O7 317.0659 1.0 316 355[M+K]+, 317[M+H]+ 35.83 ± 3.56 4.13 ± 0.03
RT, retention time; UV, ultraviolet; MW, molecular weight.
1)All samples analyzed in positive ESI-ionization mode (m/z, [M+H]+) of ToF-MS; [M+Na]+ and [M+K]+ adduct ions presented.

Table 3. BW, weight gain, intake and FER of rats
Variables NF HF HF-OS HF-OF
Initial BW (g) 190.38 ± 16.41a 190.5 ± 11.87a 191.38 ± 9.40a 191.13 ± 9.28a

Final BW (at 6 weeks; g) 427.60 ± 34.29a 460.64 ± 38.07a 455.38 ± 27.79a 457.21 ± 23.68a

Weight gain (for 6 weeks; g) 237.23 ± 21.71b 270.14 ± 28.26a 264.00 ± 23.05a 266.09 ± 18.03a

Intake (for 6 weeks; g/day) 22.56 ± 2.07b 27.02 ± 2.58a 25.22 ± 1.64a 26.01 ± 1.76a

FER1) (for 6 weeks) 0.32 ± 0.02a 0.30 ± 0.01b 0.32 ± 0.01a 0.31 ± 0.01ab

Data are expressed as mean ± SD of 8 rats per group.
BW, body weight; FER, food efficiency ratio; NF, normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. 
humifusa stems; HF-OF, high-fat diet with 2% O. humifusa fruits.
1)FER = Weight Gain (g/day)/Food Intake (g/day).
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.

Table 4. The liver, kidney fat and abdominal fat tissue weight of rats
Variables NF HF HF-OS HF-OF
Liver (g) 14.06 ± 1.75b 22.54 ± 2.01a 21.66 ± 2.34a 22.62 ± 1.89a

Retroperitoneal fat (g) 5.12 ± 0.59b 6.08 ± 1.16ab 6.68 ± 0.82a 6.46 ± 1.51a

Abdominal fat (g) 6.34 ± 2.56b 9.58 ± 2.26a 9.69 ± 1.44a 10.32 ± 2.50a

Data are expressed as mean ± SD of 8 rats per group.
NF, normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. humifusa stems; HF-OF, high-fat diet with 
2% O. humifusa fruits.
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.



Serum ALP, GOT, GPT levels
The levels of serum ALP, GOT, and GPT are presented in Table 7. While serum GOT and GPT 
levels in the HF group exhibited a tendency to be higher than those in the NF group, these 
variances did not attain statistical significance. However, notably, the serum ALP levels were 
significantly elevated in the HF group compared to the NF group. Furthermore, both HF-OS 
and HF-OF groups demonstrated significantly lower serum ALP levels in comparison to the 
HF group.

Real-time quantitative RT-PCR
To elucidate the modulation of genes related to glucose and lipid metabolism as well as 
inflammation by O. humifusa stems, we conducted a comparative analysis of hepatic gene 
expression among the experimental groups using quantitative real-time RT-PCR. The 
quantitative RT-PCR experiments revealed that the expression of most genes in the HFD 
group remained unaltered, except for 2 genes, as depicted in Fig. 2. Specifically, genes 
encoding SREBP-2 and PEPCK were significantly downregulated in the HFD group compared 
to the NF group. Interestingly, the expression of the gene encoding HMGR was observed to 
increase in O. humifusa fruits when contrasted with the HF group.
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Table 5. Serum TG, TC, HDL-C, LDL- C levels, and related ratios of experimental rats
Variables NF HF HF-OS HF-OF
TG (mg/dL) 86.76 ± 26.99a 95.53 ± 38.35a 71.00 ± 36.33a 72.48 ± 14.02a

TC (mg/dL) 76.48 ± 8.61a 97.97 ± 23.17a 90.39 ± 23.62a 77.89 ± 19.59a

HDL-C (mg/dL) 38.95 ± 7.33a 29.19 ± 6.51b 27.79 ± 11.76b 26.48 ± 7.39b

LDL-C (mg/dL) 20.18 ± 10.74b 49.68 ± 25.15a 48.41 ± 9.49a 36.92 ± 19.56ab

Data are expressed as mean ± SD of 8 rats per group.
TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; NF, normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. humifusa stems; HF-OF, high-
fat diet with 2% O. humifusa fruits.
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.

Table 6. Serum fasting glucose, insulin, HOMA-IR, and adiponectin levels of experimental rats
Variables NF HF HF-OS HF-OF
Glucose (mg/dL) 186.32 ± 13.74ab 203.93 ± 37.04a 173.70 ± 19.48b 187.63 ± 21.01ab

Insulin (ng/mL) 7.86 ± 1.71b 12.30 ± 5.38a 8.66 ± 2.94ab 9.19 ± 3.35ab

HOMA-IR 1.35 ± 0.30b 2.30 ± 1.08a 1.41 ± 0.58b 1.60 ± 0.60ab

Adiponectin (μg/mL) 7.45 ± 1.42a 5.67 ± 0.86b 6.52 ± 1.33ab 5.94 ± 0.71b

Data are expressed as mean ± SD of 8 rats per group.
HOMA-IR, homeostatic model assessment for insulin resistance; NF, normal fat diet; HF, high-fat diet; HF-OS, 
high-fat diet with 2% O. humifusa stems; HF-OF, high-fat diet with 2% O. humifusa fruits.
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.

Table 7. Serum ALP, GOT, and GPT levels of experimental rats
Variables NF HF HF-OS HF-OF
ALP, IU/L 2.70 ± 0.32b 3.45 ± 0.35a 2.92 ± 0.62b 2.68 ± 0.26b

GOT, IU/L 88.61 ± 52.39a 109.36 ± 67.86a 94.13 ± 28.18a 110.67 ± 38.45a

GPT, IU/L 12.46 ± 3.98a 16.91 ± 10.68a 15.03 ± 3.08a 17.00 ± 8.14a

Data are expressed as mean ± SD of 8 rats per group.
ALP, alkaline phosphatase; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; NF, 
normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. humifusa stems; HF-OF, high-fat diet with 2% 
O. humifusa fruits.
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.



DISCUSSION

In this study, we aimed to investigate the effects of O. humifusa on glucose and lipid 
metabolism in rats with HFD-induced obesity. We induced insulin resistance in rats 
by feeding them an HFD based on studies that have shown an association between the 
consumption of an HFD and increased insulin resistance [33-35]. Our data support the 
hypothesis that O. humifusa stems and fruits improve glucose and lipid metabolism in 
insulin-resistant rats. In this study, rats fed an HF-OS showed significantly reduced glucose 
levels compared to rats fed an HFD alone. Moreover, HOMA-IR improved significantly in the 
HF-OS group. Our findings indicate that 2% O. humifusa stems can enhance insulin sensitivity 
in obese rats fed with a HFD. O. humifusa fruits increased hepatic HMGR mRNA levels, and 
LDL-C tended to decrease with O. humifusa fruits supplementation in the HFD-fed groups.

Consistent with our findings, a previous study showed that the combination of O. humifusa 
intake and acute exercise improved insulin sensitivity via the increase in PPAR-γ, PGC-1α, 
and GLUT-4 protein expression in the skeletal muscles of rats fed an HFD [36]. The groups 
were divided as follows: (a) HFD + sedentary, (b) HFD + acute 120 min-swimming, (c) 5% 
O. humifusa + HFD + sedentary, and (d) 5% O. humifusa + HFD + acute 120 min-swimming. 
The sedentary group that consumed 5% O. humifusa plus an HFD showed decreased 
concentrations of serum fasting glucose and fasting insulin, as well as a decreased HOMA-IR 
compared to the sedentary group that consumed an HFD [36]. Hahm et al. [26] demonstrated 
the glucose- and lipid-lowering effects of O. humifusa stems on streptozotocin-induced 
diabetes in Sprague-Dawley rats.
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Fig. 2. Quantitative reverse transcription polymerase chain reaction analysis of gene expression levels in 
hepatic tissues associated with glycogen metabolism. O. humifusa fruits treatment increased HMGR expression 
compared with a HF group. Data are expressed as mean ± SD of 5 rats per group. 
NF, normal fat diet; HF, high-fat diet; HF-OS, high-fat diet with 2% O. humifusa stems; HF-OF, high-fat diet with 
2% O. humifusa fruits; ACAT2, acetyl-coenzyme A acetyltransferase 2; AdipoR2, adiponectin receptor protein 2; 
HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; IL-1β, interleukin-1 beta; PEPCK, phosphoenolpyruvate 
carboxykinase; PPAR-α, peroxisome proliferator-activated receptor alpha; SREBP-2, sterol regulatory element 
binding protein 2. 
Values with different alphabet within the same row are significantly different at P < 0.05 by Duncan’s multiple 
range test.



Adiponectin is a protein hormone (an adipokine) secreted from the adipose tissue that 
plays a vital role in the regulation of glucose and lipid metabolism [37-39]. In non-diabetic 
individuals, plasma adiponectin levels are positively associated with insulin sensitivity [40]. 
A meta-analysis indicated that the risk of type 2 diabetes is associated with lower adiponectin 
levels and increased pro-inflammatory cytokine levels [41]. Overexpression of adiponectin 
in the adipose tissue significantly decreased IL-6 levels in the circulation and reduced mRNA 
levels of TNF-α in the adipose tissue [42]. It is well established that adiponectin attenuates 
insulin resistance-related metabolic diseases by exerting anti-inflammatory effects [43]. In 
the present study, the adiponectin levels were significantly lower in the HF group than in the 
NF group. The adiponectin levels in the HF-OS group tended to be higher than those in the 
HF group. Although we did not measure inflammatory cytokine levels, these results suggest 
that O. humifusa stems may partially ameliorate insulin resistance via the anti-inflammatory 
properties of adiponectin in HFD-fed animals.

In the present study, we found no effect of O. humifusa on weight gain, hepatic tissue weight, 
or fat tissue weight. This is consistent with the findings of Jung et al. [44], which suggested 
that O. humifusa has a neutral effect on weight. In a previous study [44], rats were allocated 
to 4 groups as follows: NF, hypercholesterolemic diet (1% cholesterol [25% soybean oil]), 
2% O. humifusa extract-supplemented hypercholesterolemic diet, and 4% O. humifusa extract-
supplemented hypercholesterolemic diet. This study did not mention the parts (stems and/
or fruits) of O. humifusa that were used. Body weight gain, food intake, and liver weight 
of hypercholesterolemic rats treated with O. humifusa extract did not differ from those of 
untreated hypercholesterolemic rats. Given these findings, O. humifusa extract did not appear 
to influence body weight or food intake.

An HFD increases serum ALP, GOT, and GPT, which are markers of hepatopathies such as 
NAFLD. These enzymes are then released into bloodstream from the liver [45]. Although we 
did not observe statistically significant differences in serum GOT and GPT levels, O. humifusa 
stems and fruits significantly suppressed the elevation of ALP levels induced by the HFD in 
the present study. This indicates the hepatoprotective effects of O. humifusa. Consistent with 
our findings, Park et al. [46] showed the hepatoprotective effects of O. humifusa stems in rats 
with hepatic damage treated with carbon tetrachloride (CCl4). The increase in the activities 
of serum AST, ALT, and ALP induced by CCl4 was suppressed by O. humifusa stems.

Quantitative RT-PCR analysis showed that O. humifusa fruits treatment increased the 
expression of HMGR, an enzyme involved in cholesterol synthesis and regulation, compared 
to that in the untreated HF group. Dietary cholesterol markedly downregulates HMGR 
mRNA expression via a feedback repression mechanism of cholesterol synthesis [47], 
suggesting that hepatic cholesterol biosynthesis is inhibited by high dietary cholesterol. In 
the present study, LDL-C levels tended to decrease with O. humifusa fruits supplementation 
in the HFD-fed groups. Our results suggest that, unlike O. humifusa stems, fruits can regulate 
lipid metabolism under conditions of HFD-induced insulin resistance.

A limitation of our study is that we employed direct supplementation with O. humifusa instead of O. 
humifusa-derived ingredients. However, to the best of our knowledge, the present study is the first 
to show that O. humifusa stems ameliorate insulin resistance in rats with HFD-induced obesity but 
not in diabetic rats. Moreover, no studies have compared O. humifusa stems with O. humifusa fruits 
to specify which part of O. humifusa has better hypoglycemic and/or hypolipidemic effects. We 
demonstrated that O. humifusa stems significantly improved insulin sensitivity in HFD-fed rats.
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In the present study, the major flavonoids from O. humifusa stems and fruits were identified 
as quercetin and its metabolite isorhamnetin derivatives, with higher concentrations ​​in the 
stems than in the fruits. These compounds are beneficial for the maintenance of glucose 
homeostasis by enhancing glucose uptake into skeletal muscle cells [48]. Moreover, quercetin 
and isorhamnetin ameliorate insulin resistance in animal models of HFD-induced obesity 
[49] and diabetes [50]. The most abundant flavonoids in O. humifusa stems were isorhamnetin-
3-O-rutinoside and isorhamnetin-3-O-glucoside. Isorhamnetin-3-O-rutinoside was found at 
very high and more significant levels in the stems (395.20 ± 5.05 µg/g) than in fruits (179.29 
± 1.48 µg/g). Moreover, the O. humifusa stems (193.45 ± 2.76 µg/g) were found to contain more 
isorhamnetin-3-O-glucoside than O. humifusa fruits (9.14 ± 0.83 µg/g). Isorhamnetin-3-O-
rutinoside and isorhamnetin-3-O-glucoside showed inhibitory effects on α-amylase activity 
with IC50 values of 0.129 and 0.619 mM, respectively [51]. Additional inhibitory effects of these 
2 compounds have been reported for protein tyrosine phosphatase 1B activity with IC50 values 
of 1.20 µM and 1.16 µM, respectively [51]. The reduced insulin resistance observed in the 
present study may be attributable to the abundance of flavonoids in O. humifusa stems.

An HFD-fed mouse group treated with 50 or 100 mg of water-soluble polysaccharide for 4 
weeks showed significantly decreased TG and insulin levels, as well as increased adiponectin 
levels, compared to an untreated HFD mouse group [52]. Based on the study examining 
polysaccharides extracted from O. humifusa [52], glucose-lowering effects leading to improved 
insulin sensitivity observed in the present study could be attributed to the high amount of 
dietary fiber in O. humifusa stems. However, supplementation with O. humifusa still improved 
insulin sensitivity when the experimental diet was prepared by substituting a portion of some 
ingredients, including fiber, from the control diet [36]. Further studies are required to isolate 
and characterize the active compounds of O. humifusa stems.

In conclusion, 2% O. humifusa stems improved insulin resistance by altering fasting glucose 
levels in rats fed an HFD. This finding suggests that the abundance of quercetin and 
isorhamnetin in the 2% O. humifusa stems alleviates insulin resistance.
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