DOI QR코드

DOI QR Code

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi (Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Asai, Shuta (Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Yoshioka, Miki (Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University) ;
  • Kobayashi, Michie (National Institute of Agrobiological Sciences)
  • Received : 2009.09.30
  • Accepted : 2009.10.06
  • Published : 2009.10.31

Abstract

Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Keywords

Acknowledgement

Supported by : Ministry of Education, Science and Culture of Japan

References

  1. Achard, P., Renou, J.-P., Berthome, R., Harberd, N.P., and Genschik, P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656-660 https://doi.org/10.1016/j.cub.2008.04.034
  2. Alamillo, J.M., and García-Olmedo, F. (2001). Effects of urate, a natural scavenger of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J. 25, 529-540 https://doi.org/10.1046/j.1365-313x.2001.00984.x
  3. Amicucci, E., Gaschler, K., and Ward, J.M. (1999). NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol. 1, 524-528 https://doi.org/10.1111/j.1438-8677.1999.tb00778.x
  4. Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
  5. Asai, S., and Yoshioka, H. (2008). The role of radical burst via MAPK signaling in plant immunity. Plant Signal. Behavior 3, 920-922 https://doi.org/10.4161/psb.6601
  6. Asai, S., and Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol. Plant-Microbe Interact. 22, 619-629 https://doi.org/10.1094/MPMI-22-6-0619
  7. Asai, S., Ohta, K., and Yoshioka, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20, 1390-1406 https://doi.org/10.1105/tpc.107.055855
  8. Asselbergh, B., Curvers, K., Franca, S.C., Audenaert, K., Vuylsteke, M., van Breusegem, F., and Hofte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144, 1863-1877 https://doi.org/10.1104/pp.107.099226
  9. Bachmann, M., Shiraishi, N., Campbell, W.H., Yoo, B.C., Harmon, A.C., and Huber, S.C. (1996). Identification of a Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8, 505-517 https://doi.org/10.1105/tpc.8.3.505
  10. Banfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnar, G.Z., Krause, K.-H., and Cox, J.A. (2004). Mechanism of $Ca^{2+}$ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583-18591 https://doi.org/10.1074/jbc.M310268200
  11. Benschop, J.J., Mohammed, S., O'Flaherty, M., Heck, A.J., Slijper, M., and Menke, F.L. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1192-1214
  12. Blume, B., Nurnberger, T., Nass, N., and Scheel, D. (2000). Receptor- mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12, 1425-1440 https://doi.org/10.1105/tpc.12.8.1425
  13. Butt, Y.K.-C., Lum, J.H.-K., and Lo, S.C.-L. (2003). Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216, 762-771
  14. Chai, H.B., and Doke, N. (1987). Activation of the potential of potato leaf tissue to react hypersensitively to Phytophthora infestans by cytospore germination fluid and the enhancement of this potential by calcium ions. Physiol. Mol. Plant Pathol. 30, 27-37 https://doi.org/10.1016/0885-5765(87)90080-4
  15. Chico, J.M., Raíces, M., Tellez-Inon, M.T., and Ulloa, R.M. (2002). A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol. 128, 256-270
  16. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., and Neill, S.J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24, 667-677 https://doi.org/10.1046/j.1365-313x.2000.00911.x
  17. Crawford, N.M., Galli, M., Tischner, R., Heimer, Y.M., Okamoto, M., and Mack, A. (2006). Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends Plant Sci. 11, 526-527 https://doi.org/10.1016/j.tplants.2006.09.007
  18. Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588 https://doi.org/10.1038/29087
  19. Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 98, 13454-13459 https://doi.org/10.1073/pnas.231178298
  20. Doke, N. (1983). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23, 345-357 https://doi.org/10.1016/0048-4059(83)90019-X
  21. Dupuy, C., Ohayon, R., Valent, A., Noel-Hudson, M.-S., Deme, D., and Virion, A. (1999). Purification of a novel flavoprotein involved in the thyroid NADPH oxidase: cloning of the porcine and human cDNAs. J. Biol. Chem. 274, 37265-37269 https://doi.org/10.1074/jbc.274.52.37265
  22. Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95, 10328-10333 https://doi.org/10.1073/pnas.95.17.10328
  23. Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 36, 905-917 https://doi.org/10.1046/j.1365-313X.2003.01944.x
  24. Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., and Loake, G.J. (2005). A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA 22, 8054-8059
  25. Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446 https://doi.org/10.1038/nature01485
  26. Freymark, G., Diehl, T., Miklis, M., Romeis, T., and Panstruga, R. (2007). Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol. Plant- Microbe Interact. 20, 1213-1221 https://doi.org/10.1094/MPMI-20-10-1213
  27. Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385-402 https://doi.org/10.1111/j.1364-3703.2007.00465.x
  28. Garcia-Mata, C., and Lamattina, L. (2003). Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? Trends Plant Sci. 8, 20-26 https://doi.org/10.1016/S1360-1385(02)00009-2
  29. Gargantini, P.R., Giammaria, V., Grandellis, C., Feingold, S.E., Maldonado, S., and Ulloa, R.M. (2009). Genomic and functional characterization of StCDPK1. Plant Mol. Biol. 70, 153-172 https://doi.org/10.1007/s11103-009-9462-5
  30. Gilchrist, D.G. (1998). Programmed cell death in plant disease: The purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36, 393-414 https://doi.org/10.1146/annurev.phyto.36.1.393
  31. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227 https://doi.org/10.1146/annurev.phyto.43.040204.135923
  32. Govrin, E.M., and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751-757 https://doi.org/10.1016/S0960-9822(00)00560-1
  33. Grant, M., Brown, I., Knight, M., Ainslie, A., and Mansfield, J. (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441-450 https://doi.org/10.1046/j.1365-313x.2000.00804.x
  34. Greenberg, J.T. (1997). Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525-545 https://doi.org/10.1146/annurev.arplant.48.1.525
  35. Groom, Q.J., Torres, M.A., Fordham-Skelton, A.P., Hammond- Kosack, K.E., Robinson, N.J., and Jones, J.D.G. (1996). rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 10, 515-522 https://doi.org/10.1046/j.1365-313X.1996.10030515.x
  36. Guo, F.-Q., Okamoto, M., and Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100-103 https://doi.org/10.1126/science.1086770
  37. Gupta, R., and Luan, S. (2003). Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132, 1149-1152 https://doi.org/10.1104/pp.103.020792
  38. Harmon, A.C., Yoo, B.-C., and McCaffery, C. (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33, 7278-7287 https://doi.org/10.1021/bi00189a032
  39. Harper, J.F., Huang, J.-F., and Lloyd, S.J. (1994). Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33, 7267-7277 https://doi.org/10.1021/bi00189a031
  40. Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding $Ca^{2+}$ signals through plant protein kinases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 55, 263-288 https://doi.org/10.1146/annurev.arplant.55.031903.141627
  41. He, Y., Tang, R.-H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., et al. (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968-1971 https://doi.org/10.1126/science.1098837
  42. Hong, J.K., Yun, B.-W., Kang, J.-G., Raja, M.U., Kwon, E., Sorhagen, K., Chu, C., Wang, Y., and Loake, G.J. (2008). Nitric oxide function and signalling in plant disease resistance. J. Exp. Bot. 59, 147-154 https://doi.org/10.1093/jxb/erm244
  43. Ivashuta, S., Liu, J., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., Vance, C.P., Harrison, M.J., and Gantt, J.S. (2005). RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17, 2911-2921 https://doi.org/10.1105/tpc.105.035394
  44. Jagnandan, D., Church, J.E., Bánfi, B., Stuehr, D.J., Marrero, M.B., and Fulton, D.J. (2007). Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation. J. Biol. Chem. 282, 6494-6507 https://doi.org/10.1074/jbc.M608966200
  45. Jin, H., Axtell, M.J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B., and Baker, B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev. Cell 3, 291-297 https://doi.org/10.1016/S1534-5807(02)00205-8
  46. Jin, H., Liu, Y., Yang, K.-Y., Kim, C.Y., Baker, B., and Zhang, S. (2003). Function of a mitogen-activated protein kinase pathway in N gene mediated resistance in tobacco. Plant J. 33, 719-731 https://doi.org/10.1046/j.1365-313X.2003.01664.x
  47. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329 https://doi.org/10.1038/nature05286
  48. Kars, I., Krooshof, G.H., Wagemakers, L., Joosten, R., Benen, J.A., and van Kan, J.A. (2005). Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43, 213-225 https://doi.org/10.1111/j.1365-313X.2005.02436.x
  49. Kato, H., Asai, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., and Kawakita, K. (2008). Involvement of NbNOA1 in NO production and defense responses in INF1-treated Nicotiana benthamiana. J. Gen. Plant Pathol. 74, 15-23 https://doi.org/10.1007/s10327-007-0054-4
  50. Katou, S., Yamamoto, A., Yoshioka, H., Kawakita, K., and Doke, N. (2003). Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J. Gen. Plant Pathol. 69, 161-168
  51. Katou, S., Yoshioka, H., Kawakita, K., Rowland, O., Jones, J.D.G., Mori, H., and Doke, N. (2005). Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol. 139, 1914-1926 https://doi.org/10.1104/pp.105.066795
  52. Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., and Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with $Ca^2^+$ binding motifs. Plant Cell 10, 255-266 https://doi.org/10.1105/tpc.10.2.255
  53. Kobayashi, M., Kawakita, K., Maeshima, M., Doke, N., and Yoshioka, H. (2006). Subcellular localization of Strboh proteins and NADPH-dependent $O_2$ -generating activity in potato tuber tissues. J. Exp. Bot. 57, 1373-1379 https://doi.org/10.1093/jxb/erj113
  54. Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H. (2007). Calciumdependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065-1080 https://doi.org/10.1105/tpc.106.048884
  55. Kobayashi, M., Yoshioka, M., Asai, S., Kuchimura, K., Mori, H., Doke N., and Yoshioka, H. (2009). Calcium-dependent protein kinase-induced oxidative burst confers resistance to late blight but increases susceptibility to early blight pathogen in potato. (in submission)
  56. Kunz, C., Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E., Vedel, R., Pugin, A., et al. (2006). Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol. 170, 537-550 https://doi.org/10.1111/j.1469-8137.2006.01682.x
  57. Kwak, J.M., Mori, I.C., Pei, Z-.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D.G., and Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623-2633 https://doi.org/10.1093/emboj/cdg277
  58. Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., and Pugin, A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant,Cell 14, 2627-2641 https://doi.org/10.1105/tpc.005579
  59. Lecourieux, D., Raneva, R., and Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytol. 171, 249-269 https://doi.org/10.1111/j.1469-8137.2006.01777.x
  60. Lee, J., Rudd, J.J., Macioszek, V.K., and Scheel, D. (2004). Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279, 22440-22448 https://doi.org/10.1074/jbc.M401099200
  61. Lindermayr, C., Saalbach, G., and Durner, J. (2005). Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 137, 921-930 https://doi.org/10.1104/pp.104.058719
  62. Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2004). Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 38, 800-809 https://doi.org/10.1111/j.1365-313X.2004.02085.x
  63. Ludwig, A.A., Romeis, T., and Jones, J.D.G. (2004). CDPKmediated signalling pathways: specificity and cross-talk. J. Exp. Bot. 55, 181-188 https://doi.org/10.1093/jxb/erh008
  64. Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D.G., and Romeis, T. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. USA 102, 10736-10741 https://doi.org/10.1073/pnas.0502954102
  65. MAPK Group (2002). Mitogen-activated protein kinase cascades inplants: a new nomenclature. Trends Plant Sci. 7, 301-308 https://doi.org/10.1016/S1360-1385(02)02302-6
  66. McCubbin, A.G., Ritchie, S.M., Swanson, S.J., and Gilroy, S. (2004). The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J. 39, 206-218 https://doi.org/10.1111/j.1365-313X.2004.02121.x
  67. Miura, Y., Yoshioka, H., and Doke, N. (1995). An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive response to fungal infection or elicitor. Plant Sci. 105, 45-52 https://doi.org/10.1016/0168-9452(94)04040-N
  68. Moreau, M., Lee, G.I., Wang, Y., Crane, B.R., and Klessig, D.F. (2008). AtNOS/A1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J. Biol. Chem. 283, 32957-32967 https://doi.org/10.1074/jbc.M804838200
  69. Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F., Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., Ecker, J.R., et al. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and $Ca^2^+$-permeable channels and stomatal closure. PLoS Biol. 4, 1749-1761
  70. Murillo, I., Jaeck, E., Cordero, M.J., and San Segundo, B. (2001). Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Biol. 45, 145-158 https://doi.org/10.1023/A:1006430707075
  71. Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N.P., and Jones, J.D.G. (2008). DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650-655 https://doi.org/10.1016/j.cub.2008.03.060
  72. Nuhse, T.S., Bottrill, A.R., Jones, A.M., and Peck, S.C. (2007). Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 931-940 https://doi.org/10.1111/j.1365-313X.2007.03192.x
  73. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., et al. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by $Ca^2^+$ and phosphorylation. J. Biol. Chem. 283, 8885-8892 https://doi.org/10.1074/jbc.M708106200
  74. Pedley, K.F., and Martin, G.B. (2005). Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8, 541-547 https://doi.org/10.1016/j.pbi.2005.07.006
  75. Pitzschke, A., Djamei, A., Bitton, F., and Hirt, H. (2009). A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol. Plant 2, 120-137 https://doi.org/10.1093/mp/ssn079
  76. Plant Pathology (2005). G.N., Agrios, ed., (Burlington, MA: Elsevier Academic Press)
  77. Poinssot, B., Vandelle, E., Bentejac, M., Adrian, M., Levis, C., Brygoo, Y., Garin, J., Sicilia, F., Coutos-Thevenot, P., and Pugin, A. (2003). The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant-Microbe Interact. 16, 553-564 https://doi.org/10.1094/MPMI.2003.16.6.553
  78. Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., and Delledonne, M. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 16, 1094-1105 https://doi.org/10.1094/MPMI.2003.16.12.1094
  79. Ren, D., Yang, H., and Zhang, S. (2002). Cell death mediated by mitogen-activated protein kinase pathway is associated with the generation of hydrogen peroxide in Arabidopsis. J. Biol. Chem. 277, 559-565 https://doi.org/10.1074/jbc.M109495200
  80. Ren, D., Yang, K.-Y., Li, G., Liu, Y., and Zhang, S. (2006). Activation of Ntf4, a tobacco MAPK, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol. 141, 1482-1493 https://doi.org/10.1104/pp.106.080697
  81. Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones, J.D.G. (1999). Rapid Avr9- and Cf9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273-287 https://doi.org/10.1105/tpc.11.2.273
  82. Romeis, T., Ludwig., A.A., Martin, R., and Jones, J.D.G. (2001). Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 20, 5556-5567 https://doi.org/10.1093/emboj/20.20.5556
  83. Romero-Puertas, M.C., Perazzolli, M., Zago, E.D., and Delledonne, M. (2004). Nitric oxide signalling functions in plant-pathogen interactions. Cell. Microbiol. 9, 795-803
  84. Sagi, M., and Fluhr, R. (2001). Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 1281-1290 https://doi.org/10.1104/pp.126.3.1281
  85. Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16, 616-628 https://doi.org/10.1105/tpc.019398
  86. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327 https://doi.org/10.1046/j.1365-313x.2000.00787.x
  87. Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., and Kawakita, K. (2006). Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 47, 689-697 https://doi.org/10.1093/pcp/pcj038
  88. Sasabe, M., Soyano, T., Takahashi, Y., Sonobe, S., Igarashi, H., Itoh T. J., Hidaka, M., and Machida, Y. (2006). Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev. 20, 1004-1014 https://doi.org/10.1101/gad.1408106
  89. Seo, S., Sano, H., and Ohashi, Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen- activated protein kinase. Plant Cell 11, 289-298 https://doi.org/10.1105/tpc.11.2.289
  90. Serrander, L., Jaquet, V., Bedard, K., Plastre, O., Hartley, O., Arnaudeau, S., Demaurex, N., Schlegel, W., and Krause, K.H. (2007). NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89, 1159-1167 https://doi.org/10.1016/j.biochi.2007.05.004
  91. Simon-Plas, F., Elmayan, T., and Blein, J.-P. (2002). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 31, 137-147 https://doi.org/10.1046/j.1365-313X.2002.01342.x
  92. Sokolovski, S., and Blatt, M.R. (2004). Nitric oxide block of outwardrectifying $K^+$ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol. 136, 4275-4284 https://doi.org/10.1104/pp.104.050344
  93. Stamler, J.S., Singel, D.J., and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898-1902 https://doi.org/10.1126/science.1281928
  94. Sumimoto, H. (2008). Structure, regulation and evolution of Noxfamily NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3249-3277
  95. Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952-956 https://doi.org/10.1126/science.1156970
  96. Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K., and Dolan, L. (2008). Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241-1244 https://doi.org/10.1126/science.1152505
  97. Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., Nunoi, H., and Sumimoto, H. (2003). Novel human homologues of p47phox and p67phox participate in activation of superoxideproducing NADPH oxidases. J. Biol. Chem. 278, 25234-25246 https://doi.org/10.1074/jbc.M212856200
  98. Tanaka, S., Ishihama, N., Yoshioka, H., Huser, A., O’Connell, R., Tsuji, G., Tsuge, S., and Kubo, Y. (2009). The Colletotrichum orbiculare ssd1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. Plant Cell 21, 2517-2526 https://doi.org/10.1105/tpc.109.068023
  99. ten Have, A., Mulder, W., Visser, J., and van Kan, J.A. (1998). The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 11, 1009-1016 https://doi.org/10.1094/MPMI.1998.11.10.1009
  100. Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond- Kosack, K.E., and Jones, J.D.G. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365-370 https://doi.org/10.1046/j.1365-313X.1998.00136.x
  101. Torres, M.A., Dangl, J.L., and Jones, J.D.G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517-522 https://doi.org/10.1073/pnas.012452499
  102. Torres, M.A., Jones, J.D.G., and Dangl, J.L. (2005). Pathogeninduced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37, 1130-1134 https://doi.org/10.1038/ng1639
  103. Torres, M.A., Jones J.D.G., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378 https://doi.org/10.1104/pp.106.079467
  104. van Baarlen, P., Woltering, E.J., Staats, M., and van Kan, J.A.L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8, 41-54 https://doi.org/10.1111/j.1364-3703.2006.00367.x
  105. Vandelle, E., Poinssot, B., Wendehenne, D., Bentejac, M., and Pugin, A. (2006). Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol. Plant-Microbe Interact. 19, 429-440 https://doi.org/10.1094/MPMI-19-0429
  106. Wendehenne, D., Pugin, A., Klessig, D.F., and Durner, J. (2001). Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6, 177-183 https://doi.org/10.1016/S1360-1385(01)01893-3
  107. Wendehenne, D., Durner, J., and Klessig, D.F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 7, 449-455 https://doi.org/10.1016/j.pbi.2004.04.002
  108. Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., et al. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19, 4022-4034 https://doi.org/10.1105/tpc.107.055624
  109. Wu, G., Shortt, B.J., Lawrence, E.B., Levine, E.B., Fitzsimmons, K.C., and Shah, D.M. (1995). Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7, 1357-1368 https://doi.org/10.1105/tpc.7.9.1357
  110. Wu, G., Shortt, B.J., Lawrence, E.B., León, J., Fitzsimmons, K.C., Levine, E.B., Raskin, I., and Shah, D.M. (1997). Activation of host defense mechanisms by elevated production of $H_2O_2$ in transgenic plants. Plant Physiol. 115, 427-435 https://doi.org/10.1104/pp.115.2.427
  111. Xing, T., Wang, X.J., Malik, K., and Miki, B.L. (2001). Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol. Plant-Microbe Interact. 14, 1261-1264 https://doi.org/10.1094/MPMI.2001.14.10.1261
  112. Yamamizo, C., Kuchimura, K., Kobayashi, A., Katou, S,. Kawakita, K., Jones, J.D.G., Doke, N., and Yoshioka, H. (2006). Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 140, 681-692 https://doi.org/10.1104/pp.105.074906
  113. Yamamoto, A., Katou, S., Yoshioka, H., Doke, N., and Kawakita, K. (2003). Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J. Gen. Plant Pathol. 69, 218-229 https://doi.org/10.1007/s10327-003-0039-x
  114. Yang, K.-Y., Liu, Y., and Zhang, S. (2001). Activation of a mitogenactivated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98, 741-746 https://doi.org/10.1073/pnas.98.2.741
  115. Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R., and Lee, H.S.P. (1999). Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 991-1001 https://doi.org/10.1023/A:1006170512542
  116. Yoon, G.M., Dowd, P.E., Gilroy, S., and McCubbina, A.G. (2006). Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18, 867-878 https://doi.org/10.1105/tpc.105.037135
  117. Yoshie, Y., Goto, K., Takai, R., Iwano, M., Takayama, S., Isogai, A., and Che, F.-S. (2005). Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotech. 22, 127-135 https://doi.org/10.5511/plantbiotechnology.22.127
  118. Yoshioka, H., Sugie, K., Park, H.-J., Maeda, H., Tsuda, N., Kawakita, K., and Doke, N. (2001). Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant-Microbe Interact. 14, 725-736 https://doi.org/10.1094/MPMI.2001.14.6.725
  119. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D.G., and Doke, N. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15, 706-718 https://doi.org/10.1105/tpc.008680
  120. Zago, E., Morsa, S., Dat, J.F., Alard, P., Ferrarini, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2006). Nitric oxideand hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol. 141, 404-411 https://doi.org/10.1104/pp.106.078444
  121. Zaninotto, F., La Camera, S., Polverari, A., and Delledonne, M. (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol. 141, 379-383 https://doi.org/10.1104/pp.106.078857
  122. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 101, 15811-15816 https://doi.org/10.1073/pnas.0404536101
  123. Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P., et al. (2006). Plant nitric oxide synthase: A never-ending story? Trends Plant Sci. 11, 524-525 https://doi.org/10.1016/j.tplants.2006.09.008
  124. Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48 kD MAP kinase in tobacco. Plant Cell 9, 809-824 https://doi.org/10.1105/tpc.9.5.809
  125. Zhao, M.-G., Tian, Q.-Y., and Zhang, W.-H. (2007). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 144, 206-217 https://doi.org/10.1104/pp.107.096842
  126. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767 https://doi.org/10.1038/nature02485
  127. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EFTu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760 https://doi.org/10.1016/j.cell.2006.03.037

Cited by

  1. AGC Kinase OsOxi1 Positively Regulates Basal Resistance through Suppression of OsPti1a-Mediated Negative Regulation vol.51, pp.10, 2009, https://doi.org/10.1093/pcp/pcq132
  2. ROS signaling in the hypersensitive response : When, where and what for? vol.5, pp.4, 2009, https://doi.org/10.4161/psb.5.4.10793
  3. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.) vol.232, pp.3, 2009, https://doi.org/10.1007/s00425-010-1203-0
  4. Role of nitric oxide and reactive oxygen species in disease resistance to necrotrophic pathogens vol.5, pp.7, 2009, https://doi.org/10.4161/psb.5.7.11899
  5. Roles of calcineurin B-like protein-interacting protein kinases in innate immunity in rice vol.5, pp.8, 2010, https://doi.org/10.4161/psb.5.8.12407
  6. Cellular damage induced by a sequential oxidative treatment on Penicillium digitatum vol.109, pp.4, 2009, https://doi.org/10.1111/j.1365-2672.2010.04775.x
  7. TaDAD2, a Negative Regulator of Programmed Cell Death, Is Important for the Interaction Between Wheat and the Stripe Rust Fungus vol.24, pp.1, 2011, https://doi.org/10.1094/mpmi-06-10-0131
  8. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. vol.129, pp.2, 2011, https://doi.org/10.1007/s10658-010-9626-9
  9. Calmodulin-Dependent Activation of MAP Kinase for ROS Homeostasis in Arabidopsis vol.41, pp.6, 2009, https://doi.org/10.1016/j.molcel.2011.02.029
  10. A plastidic glucose-6-phosphate dehydrogenase is responsible for hypersensitive response cell death and reactive oxygen species production vol.77, pp.3, 2011, https://doi.org/10.1007/s10327-011-0304-3
  11. Dual role of nitric oxide in Solanum spp.–Oidium neolycopersici interactions vol.74, pp.None, 2009, https://doi.org/10.1016/j.envexpbot.2011.04.016
  12. The Role of Radical Burst in Plant Defense Responses to Necrotrophic Fungi vol.11, pp.8, 2009, https://doi.org/10.1016/s2095-3119(12)60127-0
  13. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens vol.63, pp.12, 2009, https://doi.org/10.1093/jxb/ers116
  14. Nitric Oxide-Mediated Stress Imprint in Potato as an Effect of Exposure to a Priming Agent vol.25, pp.11, 2009, https://doi.org/10.1094/mpmi-02-12-0044-r
  15. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence‐related genes and systemic acquired resistance in tobacco vol.35, pp.12, 2012, https://doi.org/10.1111/j.1365-3040.2012.02539.x
  16. Comparative Transcriptome Analysis of the Necrotrophic Fungus Ascochyta rabiei during Oxidative Stress: Insight for Fungal Survival in the Host Plant vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033128
  17. Paranoid potato : Phytophthora-resistant genotype shows constitutively activated defense vol.7, pp.3, 2009, https://doi.org/10.4161/psb.19149
  18. Reactive oxygen species generation and signaling in plants vol.7, pp.12, 2009, https://doi.org/10.4161/psb.22455
  19. Increased Resistance Against Citrus Canker Mediated by a Citrus Mitogen-Activated Protein Kinase vol.26, pp.10, 2009, https://doi.org/10.1094/mpmi-04-13-0122-r
  20. Hypersensitive response - A biophysical phenomenon of producers vol.3, pp.2, 2013, https://doi.org/10.1556/eujmi.3.2013.2.3
  21. A Translationally Controlled Tumor Protein Negatively Regulates the Hypersensitive Response in Nicotiana benthamiana vol.54, pp.8, 2013, https://doi.org/10.1093/pcp/pct090
  22. Trichoderma asperelloides Suppresses Nitric Oxide Generation Elicited by Fusarium oxysporum in Arabidopsis Roots vol.27, pp.4, 2014, https://doi.org/10.1094/mpmi-06-13-0160-r
  23. Robust anti‐oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst vol.201, pp.2, 2009, https://doi.org/10.1111/nph.12530
  24. Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana vol.36, pp.5, 2009, https://doi.org/10.1007/s10529-014-1462-0
  25. SEC14 Phospholipid Transfer Protein Is Involved in Lipid Signaling-Mediated Plant Immune Responses in Nicotiana benthamiana vol.9, pp.5, 2009, https://doi.org/10.1371/journal.pone.0098150
  26. Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii vol.99, pp.10, 2009, https://doi.org/10.1007/s00253-014-6367-2
  27. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00463
  28. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance vol.66, pp.10, 2009, https://doi.org/10.1093/jxb/erv089
  29. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00187
  30. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00689
  31. Arms race: diverse effector proteins with conserved motifs vol.14, pp.2, 2019, https://doi.org/10.1080/15592324.2018.1557008
  32. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones vol.9, pp.3, 2009, https://doi.org/10.1007/s13205-019-1638-3
  33. Spatial and Temporal Calcium Signaling and Its Physiological Effects in Moso Bamboo under Drought Stress vol.10, pp.3, 2009, https://doi.org/10.3390/f10030224
  34. Mechanisms of aerenchyma formation in maize roots vol.14, pp.14, 2019, https://doi.org/10.5897/ajar2016.11259
  35. Effect of the AM Fungus Sieverdingia tortuosa on Common Vetch Responses to an Anthracnose Pathogen vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.542623
  36. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus vol.18, pp.5, 2009, https://doi.org/10.1111/pbi.13289
  37. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava vol.19, pp.4, 2009, https://doi.org/10.1111/pbi.13505
  38. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production vol.87, pp.23, 2009, https://doi.org/10.1128/aem.01601-21
  39. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips vol.425, pp.None, 2009, https://doi.org/10.1016/j.jhazmat.2021.127964