DOI QR코드

DOI QR Code

Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

  • Poudel, Ajit (Institute of Agricultural Sciences, Banaras Hindu University) ;
  • Navathe, Sudhir (Institute of Agricultural Sciences, Banaras Hindu University) ;
  • Chand, Ramesh (Institute of Agricultural Sciences, Banaras Hindu University) ;
  • Mishra, Vinod K. (Institute of Agricultural Sciences, Banaras Hindu University) ;
  • Singh, Pawan K. (International Maize and Wheat Improvement Center (CIMMYT)) ;
  • Joshi, Arun K. (Borlaug Institute for South Asia (BISA))
  • Received : 2018.09.07
  • Accepted : 2019.04.22
  • Published : 2019.08.01

Abstract

Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide ($H_2O_2$), superoxide ($O_2{^-}$) and hydroxyl radical ($OH^-$) were studied after inoculation under field conditions for two consecutive years. $H_2O_2$ significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and $H_2O_2$ to the Area Under Disease Progress Curve (AUDPC). The production of $H_2O_2$ was higher in the resistant genotypes than susceptible ones. The $O_2{^-}$ and $OH^-$ positively correlated with AUDPC but negatively with lignin content. This study illustrates that $H_2O_2$ has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. $H_2O_2$ associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

Keywords

E1PPBG_2019_v35n4_287_f0001.png 이미지

Fig. 1. Cluster analysis of 29 wheat genotypes on the basis their response to B. sorokiniana over two years in terms of (A) free radical production and lignin accumulation and, (B) various phenotypic traits such as AUDPC, LN, LS, DH, DM, PY, BM, and TKW. Clades highlighted with red lines are indicating clustering of susceptible genotypes whereas those of blue are resistant. (C) Plants from a resistant group; genotype Yangmai 6. (D) Plants showing typical symptoms of spot blotch seven days after inoculation on susceptible genotype Ciano T79.

E1PPBG_2019_v35n4_287_f0002.png 이미지

Fig. 2. Relative rates of resistance for the latent period, sporulation, fitness index, and AUDPC in resistant and susceptible genotypes. The relative rate of resistance in 29 wheat genotypes studied is calculated over the susceptible check Ciano T79.

E1PPBG_2019_v35n4_287_f0003.png 이미지

Fig. 3. Clustering of the correlated and non-correlated variables using the VARCLUS method in SAS v9.2 (A) Clustering of phenotypic traits and lignin content at three days. The components of the disease clustered together, indicating that enhanced resistance correlated to higher yield. (B) Clustering of biochemical traits indicating H2O2 is significantly affecting lignin production.

E1PPBG_2019_v35n4_287_f0004.png 이미지

Fig. 4. Accumulation of various reactive oxygen species and lignin at different time points in resistant and susceptible wheat genotypes in response to B. sorokiniana infection. (A) Accumulation of superoxide radicals (O2-). The plot is based on mean O2- accumulation in resistant and susceptible genotypes. LSD (0.05) for genotype = 0.0064 and for time = 0.0024. (B) Hydroxyl radical (OH-) production. The plot is based on mean OH- accumulation in resistant and susceptible genotypes. LSD (0.05) for genotype = 19.626 and for time = 7.2889. (C) Hydrogen peroxide (H2O2) production. The plot is based on mean H2O2 accumulation in resistant and susceptible genotypes. LSD (0.05) for genotype = 0.3143 and for time = 0.1167. (D) Lignin accumulation. The plot is based on mean H2O2 accumulation in resistant and susceptible genotypes. LSD (0.05) for genotype = 18.479 and for time = 6.8629. Data from two independent experiments are combined. ANOVA calculates the significant difference in the general linear model (GLM). Asterisks (*) show the significant difference as compared to time 0 DAI.

E1PPBG_2019_v35n4_287_f0005.png 이미지

Fig. 5. (A) Symptoms of B. sorokiniana on flag leaves over time; (B) Differential accumulation of H2O2 in response to B. sorokiniana visualized by DAB staining in flag leaves under time scan 0 to 14 days after infection (DAI). (C) Lignin deposition in flag leaves in response to B. sorokiniana as visualized by phloroglucinol-HCl staining in a longitudinal section of leaves from 0 to 14 DAI. (D) Lignin deposition in flag leaves in response to B. sorokiniana as visualized by phloroglucinol-HCl staining in the transverse section of leaves from 0 to 14 DAI. The upper panel represents resistant (R) genotype (Cv. Yangmai6) and the lower panel the susceptible (S) genotype (Cv. Ciano T79). Penetration points are marked by yellow arrowheads. Red line shown in the picture indicates size bar.

Table 1. Pedigree and spot blotch response of 29 wheat genotypes used in the experiment

E1PPBG_2019_v35n4_287_t0001.png 이미지

Table 3. Pearson’s correlation coefficients for disease, fitness parameters and relative rate of resistance for B. sorokiniana

E1PPBG_2019_v35n4_287_t0002.png 이미지

Table 4. Correlations among H2O2, OH-, O2-, and lignin at different time period before and after inoculation of spot blotch pathogen

E1PPBG_2019_v35n4_287_t0003.png 이미지

Table 2. Mean values of various disease related traits and relative rates of resistance in 29 wheat genotypes

E1PPBG_2019_v35n4_287_t0004.png 이미지

References

  1. Aldaeus, F. 2011. Protocol for round robin test of lignin content in lignin samples COST FP0901. URL http://web.abo.fi/fak/tkf/spk/costfp0901/Round_robin/COST_FP0901-Protocol_for_round_robin_test_of_lignin_content-version_3.pdf [6 July 2019].
  2. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Bashyal, B. M., Chand, R., Prasad, L. C. and Joshi, A. K. 2011. Partial resistance components for the management of spot blotch pathogen Bipolaris sorokiniana of barley (Hordeum vulgare L.) Acta Phytopathol. Entomol. Hung. 46:49-57. https://doi.org/10.1556/APhyt.46.2011.1.6
  4. Beardmore, J., Ride, J. P. and Granger, J. W. 1983. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiol. Plant Pathol. 22:209-220. https://doi.org/10.1016/S0048-4059(83)81010-8
  5. Bhuiyan, N. H., Selvaraj, G., Wei, Y. and King, J. 2009. Role of lignification in plant defense. Plant Signal Behav. 4:158-159. https://doi.org/10.4161/psb.4.2.7688
  6. Bingham, I. J., Walters, D. R., Foulkes, M. J. and Paveley, N. D. 2009. Crop traits and the tolerance of wheat and barley to foliar disease. Ann. Appl. Biol. 154:159-173. https://doi.org/10.1111/j.1744-7348.2008.00291.x
  7. Bird, P. M. and Ride, J. P. 1981. The resistance of wheat to Septoria nodorum: fungal development in relation to host lignification. Physiol. Plant Pathol. 19:289-299. https://doi.org/10.1016/S0048-4059(81)80063-X
  8. Bishop, D. L., Chatterton, N. J., Harrison, P. A. and Hatfield, R. D. 2002. Changes in carbohydrate coordinated partitioning and cell wall remodeling with stress-induced pathogenesis in wheat sheaths. Physiol. Mol. Plant Pathol. 61:53-63. https://doi.org/10.1016/S0885-5765(02)90416-9
  9. Boerjan, W., Ralph, J. and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
  10. Boudet, A. M. 2000. Lignins and lignification: selected issues. Plant Physiol. Biochem. 38:81-96. https://doi.org/10.1016/S0981-9428(00)00166-2
  11. Cano-Delgado, A., Penfield, S., Smith, C., Catley, M. and Bevan, M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351-362. https://doi.org/10.1046/j.1365-313X.2003.01729.x
  12. Chand, R., Yadav, O. P., Bashyal, B. M., Prasad, L. C. and Joshi, A. K. 2013. Technique for the maintenance of heterokaryotic isolates of B. sorokiniana. Indian Phytopathol. 66:61-65.
  13. Das, M. K., Rajaram, S., Kronstad, W. E., Mundt, C. C. and Singh, R. P. 1993. Associations and genetics of three components of slow rusting in leaf rust of wheat. Euphytica 68:99-109. https://doi.org/10.1007/BF00024159
  14. Denness, L., McKenna, J. F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C. and Hamann, T. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species-and jasmonic aciddependent process in Arabidopsis. Plant Physiol. 156:1364-1374. https://doi.org/10.1104/pp.111.175737
  15. Dixon, R. A., Chen, F., Guo, D. and Parvathi, K. 2001. The biosynthesis of monolignols: A "metabolic grid", or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069-1084. https://doi.org/10.1016/S0031-9422(01)00092-9
  16. Dubin, H. J. and van Ginkel, M. 1991. The status of wheat diseases and disease research in warmer areas. In: Wheat for the nontraditional warm areas: A proceedings of the International Conference, ed. by D. A. Saunders, pp. 125-145. International Maize and Wheat Improvement Center, Mexico City, Mexico.
  17. Eisa, M., Chand, R. and Joshi, A. K. 2013. Biochemical and histochemical traits: a promising way to screen resistance against spot blotch Bipolaris sorokiniana of wheat. Eur. J. Plant Pathol. 137:805-820. https://doi.org/10.1007/s10658-013-0290-8
  18. Elad, Y. and Evensen, K. 1995. Physiological aspects of resistance to Botrytis cinerea. Phytopathology 85:637-643.
  19. Gupta, P. K., Chand, R., Vasistha, N. K., Pandey, S. P., Kumar, U., Mishra, V. K. and Joshi, A. K. 2018. Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathol. 67:508-531. https://doi.org/10.1111/ppa.12781
  20. Gurung, S., Mahto, B. N., Gyawali, S. and Adhikari, T. B. 2013. Phenotypic and molecular diversity of Cochliobolus sativus populations from wheat. Plant Dis. 97:62-73. https://doi.org/10.1094/PDIS-01-12-0092-RE
  21. Hakmaoui, A., Perez-Bueno, M. L., Garcia-Fontana, B., Camejo, D., Jimenez, A., Sevilla, F. and Baron, M. 2012. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. J. Exp. Bot. 63:5487-5496. https://doi.org/10.1093/jxb/ers212
  22. Halliwell, B., Gutteridge, J. M. and Aruoma, O. I. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165:215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  23. Jacobo-Velazquez, D. A., Gonzalez-Aguero, M. and Cisneros-Zevallos, L. 2015. Cross-talk between signaling pathways:the link between plant secondary metabolite production and wounding stress response. Sci. Rep. 5:8608. https://doi.org/10.1038/srep08608
  24. Joshi, A. K. and Chand, R. 2002. Variation and inheritance of leaf angle, and its association with spot blotch Bipolaris sorokiniana severity in wheat Triticum aestivum. Euphytica 124:283-291. https://doi.org/10.1023/A:1015773404694
  25. Joshi, A. K., Chand, R. and Arun, B. 2002. Relationship of plant height and days to maturity with resistance to spot blotch in wheat. Euphytica 123:221-228. https://doi.org/10.1023/A:1014922416058
  26. Joshi, A. K., Kumar, S., Chand, R. and Ortiz-Ferrara, G. 2004. Inheritance of resistance to spot blotch caused by Bipolaris sorokiniana in spring wheat. Plant Breed. 123:213-219. https://doi.org/10.1111/j.1439-0523.2004.00954.x
  27. Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S. and Kogel, K.-H. 2002. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol. Plant Pathol. 3:185-195. https://doi.org/10.1046/j.1364-3703.2002.00120.x
  28. Levene, H. 1960. Robust tests for equality of variances. In: Contributions to probability and statistics, ed. by I. Olkin, pp. 278-292. Stanford University Press, Palo Alto, CA, USA.
  29. Lightfoot, D. J., McGrann, G. R. and Able, A. J. 2017. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. Mol. Plant Pathol. 18:323-335. https://doi.org/10.1111/mpp.12399
  30. Marschall, R. and Tudzynski, P. 2016. Reactive oxygen species in development and infection processes. Semin. Cell Dev. Biol. 57:138-146. https://doi.org/10.1016/j.semcdb.2016.03.020
  31. Mehta, Y. R. 1998. Constraints on the integrated management of spot blotch of wheat. In: Helminthosporium blights of wheat:Spot blotch and tan spot, eds. by E. Duveiller, H. J. Dubin, J. Reeves and A. McNab, pp. 18-27. International Maize and Wheat Improvement Center, Mexico City, Mexico.
  32. Mellersh, D. G., Foulds, I. V., Higgins, V. J. and Heath, M. C. 2002. $H_2O_2$ plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 29:257-268. https://doi.org/10.1046/j.0960-7412.2001.01215.x
  33. Miedes, E., Vanholme, R., Boerjan, W. and Molina, A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5:358.
  34. Milus, E. A. and Line, R. F. 1980. Characterization of resistance to leaf rust in Pacific Northwest wheats. Phytopathology 70:167-172. https://doi.org/10.1094/Phyto-70-167
  35. Misra, H. P. and Fridovich, I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247:3170-3175. https://doi.org/10.1016/S0021-9258(19)45228-9
  36. Nicholson, R. L. and Hammerschmidt, R. 1992. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30:369-389. https://doi.org/10.1146/annurev.py.30.090192.002101
  37. Parlevliet, J. E. 1979. Components of resistance that reduce the rate of epidemic development. Annu. Rev. Phytopathol. 17:203-222. https://doi.org/10.1146/annurev.py.17.090179.001223
  38. Patterson, B. D., MacRae, E. A. and Ferguson, I. B. 1984. Estimation of hydrogen peroxide in plant extracts using titanium IV. Anal. Biochem. 139:487-492. https://doi.org/10.1016/0003-2697(84)90039-3
  39. Purwar, S., Gupta, S. M. and Kumar, A. 2012. Enzymes of phenylpropanoid metabolism involved in strengthening the structural barrier for providing genotype and stage-dependent resistance to Karnal bunt in wheat. Am. J. Plant Sci. 3:261-267. https://doi.org/10.4236/ajps.2012.32031
  40. Ros Barcelo, A. 2005. Xylem parenchyma cells deliver the $H_2O_2$ necessary for lignification in differentiating xylem vessels. Planta 220:747-756. https://doi.org/10.1007/s00425-004-1394-3
  41. Schafer, P., Huckelhoven, R. and Kogel, K. H. 2004. The white barley mutant albostrians shows a super-susceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Mol. Plant-Microbe Interact. 17:366-373. https://doi.org/10.1094/MPMI.2004.17.4.366
  42. Shaner, G. and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing in Knox wheat. Phytopathology 67:1051-1056. https://doi.org/10.1094/Phyto-67-1051
  43. Shapiro, S. S. and Wilk, M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591-611. https://doi.org/10.1093/biomet/52.3-4.591
  44. Sharma, S., Sahu, R., Navathe, S., Mishra, V. K., Chand, R., Singh, P. K., Joshi, A. K. and Pandey, S. P. 2018. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). Front. Plant Sci. 9:636. https://doi.org/10.3389/fpls.2018.00636
  45. Shetty, N. P., Mehrabi, R., Lutken, H., Haldrup, A., Kema, G. H., Collinge, D. B. and Jorgensen, H. J. 2007. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol. 174:637-647. https://doi.org/10.1111/j.1469-8137.2007.02026.x
  46. Sillero, J. C. and Rubiales, D. 2002. Histological characterization of resistance to Uromyces viciae-fabae in faba bean. Phytopathology 92:294-299. https://doi.org/10.1094/PHYTO.2002.92.3.294
  47. Singh, P. K., Zhang, Y., He, X., Singh, R. P., Chand, R., Mishra, V. K., Malaker, P. K., Reza, M. A., Rahman, M. M., Islam, R., Chowdhury, A. K., Bhattacharya, P. M., Kalappanavar, I. K., Crossa, J. and Joshi, A. K. 2015. Development and characterization of the 4th CSISA-spot blotch nursery of bread wheat. Eur. J. Plant Pathol. 143:595-605. https://doi.org/10.1007/s10658-015-0712-x
  48. Southerton, S. G. and Deverall, B. J. 1990. Histochemical and chemical evidence for lignin accumulation during the expression of resistance to leaf rust fungi in wheat. Physiol. Mol. Plant Pathol. 36:483-494. https://doi.org/10.1016/0885-5765(90)90021-O
  49. Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of $H_2O_2$ in plants. $H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  50. Tomerlin, J. R., Eversmeyer, M. G., Kramer, C. L. and Browder, L. E. 1983. Temperature and host effects on latent and infectious periods and urediniospore production of Puccinia recondita f. sp. tritici. Phytopathology 73:414-419. https://doi.org/10.1094/Phyto-73-414
  51. Tronchet, M., Balague, C., Kroj, T., Jouanin, L. and Roby, D. 2010. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11:83-92. https://doi.org/10.1111/j.1364-3703.2009.00578.x
  52. Willocquet, L., Savary, S. and Yuen, J. 2017. Multiscale phenotyping and decision strategies in breeding for resistance. Trends Plant Sci. 22:420-432. https://doi.org/10.1016/j.tplants.2017.01.009
  53. Wu, G., Shortt, B. J., Lawrence, E. B., Leon, J., Fitzsimmons, K. C., Levine, E. B., Raskin, I. and Shah, D. M. 1997. Activation of host defense mechanisms by elevated production of $H_2O_2$ in transgenic plants. Plant Physiol. 115:427-435. https://doi.org/10.1104/pp.115.2.427
  54. Yusuf, C. S., Chand, R., Mishra, V. K. and Joshi, A. K. 2016. The association between leaf malondialdehyde and lignin content and resistance to spot blotch in wheat. J. Phytopathol. 164:896-903. https://doi.org/10.1111/jph.12509
  55. Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x