• Title/Summary/Keyword: Acceleration and Deceleration

Search Result 382, Processing Time 0.022 seconds

A Study on the Selection of Train Operation Mode Minimizing the Running Energy Consumption (전동열차 운행에너지를 최소화 하는 운전모드 결정)

  • Kim, Yong-Hyun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • this paper analyses how much acceleration and deceleration of urban rail vehicle should be applied and how to choose an operation mode to minimize energy consumption when train runs between stations within the fixed operation time. The decided operation pattern satisfying the minimum energy consumption becomes a target trajectory and a basis for the controller design criteria. To make this goal it grasps the characteristics of urban rail vehicle, realize operation energy model of urban rail vehicle and verity the accuracy of embodied model the Matlab simulation with the same operation result of real route. It searches for operation pattern to minimize operation energy by changing the acceleration and deceleration on the imaginative route and proposes operation pattern minimizing energy consumption by applying real operation data between stations of Seoul Metropolitan Subway Line 6.

The Digital PI Control for Driving Constant Speed of Brushless DC Motor (브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어)

  • Yoon, Shin-Yong;Kim, Hyun-Soo;Kim, Yong;Kim, Il-Nam;Baek, Soo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.395-402
    • /
    • 2000
  • This paper presents the improvement for speed characteristics of a Brushless DC Motor (BLDCM), it was applied to digital PI control for this. The practical PID control has been widely used to velocity control of DC motors. In this paper, a digital PI controller is used in order to decrease the speed error in constant velocity control of BLDCM. A TMS320C31 DSP is used for the microprocessor of digital PI control. The method using the DSP carry out the real-time control. The DSP has the rapid calculation ability and sampling time used lms. Driving BLDCM used 50W, motor input DC 150V and rotation speed 3000rpm. When BLDCM is to approval for discretion velocity at the acceleration and deceleration driving with any load, it was a feasible for stabilization control. Therefore, the experimental results indicate the superiority and validity of the velocity control by digital PI control.

  • PDF

A Study On Field Test of IGBT Type Propulsion System fo Electric oilway (전동차용 IGBT형 추진제어장치의 본선시험에 관한 연구)

  • 정만규;고영철;방이석;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.515-521
    • /
    • 2000
  • This paper describes the field test results of IGBT VVVF inverter for the railway propulsion system. The 1,650kVA IGBT VVVF inverter has been developed. Therefore, the field test is performed in SMG 6 Line to confirm its the reliability and performance. The train consists of 4M4T and the electrical equipment for field test are as follows : VVVF inverter 4 sets, 16 traction motors and 2 SIVs. The propulsion system is composed with 1C4M(1-Controller 4-Motors). The results of propulsion system which have the excellent acceleration/deceleration and the jerk characteristics as well as starting ability on slope are taken through the field test.

  • PDF

An Numerical Study on the Flow Uniformity and Pressure Drop in Dual Monolith Catalytic Converter during the Rapid Acceleration/Deceleration Driving (급가감속 운전에 따른 듀얼 모노리스형 촉매변환기 내의 유동 균일도와 압력 강하에 관한 수치적 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.63-71
    • /
    • 2007
  • The conversion efficiency, durability and pressure drop of the automotive exhaust catalysts are dependent on the flow distribution within the substrate. Conventional porous medium approaches assuming monolith resistance based on the one-dimensional laminar flow for simulating the flow through the automotive exhaust catalysts over-predict the flow uniformity in the monolith. In this study, additional pressure loss is also considered by accounting for entrance effects due to the oblique flow incident on the front face of monolith as a consequence of flow separation and recirculation within the diffuser. The incorporation of an additional pressure loss improves the predictions for the maximum flow velocity within the substrate. An numerical study has also been conducted for the three-dimensional unsteady incompressible non-reacting flow inside various dual-monolith catalytic converters for the rapid acceleration/deceleration driving.

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

Determining the Required Minimum Spacing between Freeway Interchange for High-speed Roadway (초고속 주행환경에서의 진출입 시설간 적정 이격거리 기준 산정 연구)

  • Kim, Heung Rae;Kim, Kyoung Su;Lee, Geun Hee;Shin, Joon Soo;Baek, Jung Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • PURPOSES: The objective of this study is to estimate required minimum spacing between Freeway IC for high-speed roadways. METHODS : Since high-speed roadways with over 140 km/h design speed do not exist in Korea, VISSIM Simulation Program was used for analysis. Acceleration noise and conflicts were selected for Evaluation Index. Standard deviation size for acceleration and deceleration was calculated by VISSIM to estimate acceleration noise. Conflicts were produced in areas between Freeway IC with SSAM. RESULTS : As a result, required minimum spacing was 6 km for acceleration noise analysis, while 5 km was deducted for conflict analysis. For Model Evaluation, with SAS, conflicts did not show much difference in 5~6 km area by 90% confidence interval. CONCLUSIONS : For acceleration noise, results showed lacking in its discrimination between index per Minimum Spacing. However, conflicts were valid in difference; required minimum spacing was 5 km by validation result.

근전도신호를 이용한 노약자/장애인용 재활 보조시스템의 인터페이스기법

  • 장영건;신철규;이은실;권장우;홍승홍
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.107-113
    • /
    • 1997
  • In this paper, an interfacing method to control rehabilitation assitance system with bio-signal is proposed. Controlling with EMG signals method has certain advantage on signal-collecting, but has some drawbacks in the function resolution of EMG signals because data-processing process is not efficient. To improve function-resolution and to increase the efficiency of EMG signal interfacing with rehabilitation assistance system, Multi-layer Perception which is highly effective with static signal and hidden-Markov model for dynamic signal resolving are fused together. In proposed method. The direction and average speed of the rehabilitation assitance system are controlled by the trajectory control and estimation of the moving direction result from the fused model. From the experiment, proposed GMM and 2-level MLP hybrid-classifier yielded 8.6% perception-error rate, improving function resolution. New acceleration control method constructed with 3 nested linear filter produced continuous acceleration paths without the information of destination point. Thus, the mass output caused by non- continuous acceleration-deceleration was eliminated. In the simulation, the necessary calculation, in the case of multiplication, was reduced by 11.54%.

  • PDF

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.

A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle (ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구)

  • Choi, Jong-Hwan;Kim, Wung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.